Smarca5-mediated epigenetic programming facilitates fetal HSPC development in vertebrates.

Yanyan Ding, Wen Wang, Dongyuan Ma, Guixian Liang, Zhixin Kang, Yuanyuan Xue, Yifan Zhang, Lu Wang, Jian Heng, Yong Zhang, Feng Liu
Author Information
  1. Yanyan Ding: State Key Laboratory of Membrane Biology, Institute of Zoology.
  2. Wen Wang: Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai, China; and.
  3. Dongyuan Ma: State Key Laboratory of Membrane Biology, Institute of Zoology.
  4. Guixian Liang: State Key Laboratory of Membrane Biology, Institute of Zoology.
  5. Zhixin Kang: State Key Laboratory of Membrane Biology, Institute of Zoology.
  6. Yuanyuan Xue: State Key Laboratory of Membrane Biology, Institute of Zoology.
  7. Yifan Zhang: State Key Laboratory of Membrane Biology, Institute of Zoology.
  8. Lu Wang: State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Tianjin, China.
  9. Jian Heng: State Key Laboratory of Membrane Biology, Institute of Zoology.
  10. Yong Zhang: Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai, China; and.
  11. Feng Liu: State Key Laboratory of Membrane Biology, Institute of Zoology.

Abstract

Nascent hematopoietic stem and progenitor cells (HSPCs) acquire definitive hematopoietic characteristics only when they develop into fetal HSPCs; however, the mechanisms underlying fetal HSPC development are poorly understood. Here, we profiled the chromatin accessibility and transcriptional features of zebrafish nascent and fetal HSPCs using ATAC-seq and RNA-seq and revealed dynamic changes during HSPC transition. Functional assays demonstrated that chromatin remodeler-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Systematical screening of chromatin remodeler-related genes identified that smarca5 is responsible for the maintenance of chromatin accessibility at promoters of hematopoiesis-related genes in fetal HSPCs. Mechanistically, Smarca5 interacts with nucleolin to promote chromatin remodeling, thereby facilitating genomic binding of transcription factors to regulate expression of hematopoietic regulators such as bcl11ab. Our results unravel a new role of epigenetic regulation and reveal that Smarca5-mediated epigenetic programming is responsible for fetal HSPC development, which will provide new insights into the generation of functional HSPCs both in vivo and in vitro.

References

  1. Trends Cell Biol. 2018 Dec;28(12):976-986 [PMID: 29935893]
  2. Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):407-12 [PMID: 15630097]
  3. Nature. 2018 Jan 24;553(7689):418-426 [PMID: 29364285]
  4. Dev Cell. 2019 Jan 28;48(2):135-150 [PMID: 30695696]
  5. Blood. 2011 Jul 14;118(2):289-97 [PMID: 21586750]
  6. EMBO Rep. 2017 Oct;18(10):1673-1674 [PMID: 28835548]
  7. Nature. 2019 May;569(7756):345-354 [PMID: 31092938]
  8. Nat Immunol. 2015 Jul;16(7):775-84 [PMID: 25985234]
  9. J Biol Chem. 2007 Apr 27;282(17):12439-49 [PMID: 17255095]
  10. Cell Stem Cell. 2012 Nov 2;11(5):701-14 [PMID: 23122293]
  11. Nat Methods. 2013 Mar;10(3):256-8 [PMID: 23377378]
  12. Stem Cells. 2017 Jun;35(6):1614-1623 [PMID: 28276606]
  13. Nature. 2010 Mar 4;464(7285):112-5 [PMID: 20154732]
  14. Nature. 2019 Oct;574(7778):365-371 [PMID: 31597962]
  15. Nature. 2016 Jun 30;534(7609):652-7 [PMID: 27309802]
  16. Science. 2008 Dec 19;322(5909):1839-42 [PMID: 19056937]
  17. Nat Commun. 2019 Apr 4;10(1):1551 [PMID: 30948728]
  18. Nat Immunol. 2003 Dec;4(12):1238-46 [PMID: 14608381]
  19. Blood. 2005 Dec 1;106(12):3803-10 [PMID: 16099879]
  20. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1734-43 [PMID: 25831528]
  21. Cell Stem Cell. 2018 Sep 6;23(3):412-425.e10 [PMID: 30122475]
  22. Blood. 2006 Dec 15;108(13):3976-8 [PMID: 16926288]
  23. Nature. 2019 May;569(7754):136-140 [PMID: 30996347]
  24. Nature. 2010 Mar 4;464(7285):108-11 [PMID: 20154733]
  25. Nat Cell Biol. 2013 Dec;15(12):1516-25 [PMID: 24240475]
  26. Dev Cell. 2014 Jun 9;29(5):621-628 [PMID: 24914562]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. J Vis Exp. 2016 Jun 11;(112): [PMID: 27341538]
  29. Bioinformatics. 2009 Oct 1;25(19):2605-6 [PMID: 19689956]
  30. J Biol Chem. 2012 Jul 20;287(30):25353-60 [PMID: 22573321]
  31. EMBO J. 2006 Apr 19;25(8):1669-79 [PMID: 16601700]
  32. Eur J Biochem. 1988 Aug 15;175(3):525-30 [PMID: 3409881]
  33. Am J Physiol Heart Circ Physiol. 2013 Dec 1;305(11):H1624-38 [PMID: 24077883]
  34. Cell. 2008 Feb 22;132(4):631-44 [PMID: 18295580]
  35. Blood. 2001 Dec 1;98(12):3413-20 [PMID: 11719382]
  36. Dev Cell. 2017 Aug 21;42(4):349-362.e4 [PMID: 28803829]
  37. Trends Cell Biol. 2018 Mar;28(3):237-253 [PMID: 29217127]
  38. Neuron. 2007 Jul 19;55(2):201-15 [PMID: 17640523]
  39. BMC Dev Biol. 2007 May 04;7:42 [PMID: 17477879]
  40. Nucleic Acids Res. 1984 Apr 11;12(7):3025-35 [PMID: 6562463]
  41. Cell Rep. 2016 Sep 20;16(12):3181-3194 [PMID: 27653684]
  42. Nature. 2010 Mar 4;464(7285):116-20 [PMID: 20154729]
  43. EMBO J. 1998 Mar 2;17(5):1476-86 [PMID: 9482744]
  44. Nucleus. 2016 Jul 3;7(4):388-404 [PMID: 27429206]
  45. Cell Rep. 2017 Jul 5;20(1):61-75 [PMID: 28683324]
  46. Nat Rev Mol Cell Biol. 2011 Jan;12(1):36-47 [PMID: 21179060]
  47. Nat Rev Genet. 2019 Apr;20(4):207-220 [PMID: 30675018]
  48. Annu Rev Biophys. 2016 Jul 5;45:153-81 [PMID: 27391925]
  49. Trends Cell Biol. 2007 Feb;17(2):80-6 [PMID: 17157503]
  50. Cell Rep. 2019 Apr 30;27(5):1567-1578.e5 [PMID: 31042481]
  51. Leukemia. 2018 Aug;32(8):1865-1868 [PMID: 29572507]
  52. Nature. 2009 Aug 27;460(7259):1093-7 [PMID: 19657335]
  53. Immunity. 2006 Dec;25(6):963-75 [PMID: 17157041]
  54. Development. 2016 Apr 15;143(8):1284-9 [PMID: 27095492]
  55. Biomed Res Int. 2015;2015:347571 [PMID: 25789315]

MeSH Term

Adenosine Triphosphatases
Animals
Chromosomal Proteins, Non-Histone
Epigenesis, Genetic
Hematopoiesis
Hematopoietic Stem Cells
Mice
Mice, Inbred C57BL
Zebrafish
Zebrafish Proteins

Chemicals

Chromosomal Proteins, Non-Histone
Zebrafish Proteins
Adenosine Triphosphatases
Smarca5 protein, mouse
Smarca5 protein, zebrafish