Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort.

Casey P Shannon, Travis M Blimkie, Rym Ben-Othman, Nicole Gladish, Nelly Amenyogbe, Sibyl Drissler, Rachel D Edgar, Queenie Chan, Mel Krajden, Leonard J Foster, Michael S Kobor, William W Mohn, Ryan R Brinkman, Kim-Anh Le Cao, Richard H Scheuermann, Scott J Tebbutt, Robert E W Hancock, Wayne C Koff, Tobias R Kollmann, Manish Sadarangani, Amy Huei-Yi Lee
Author Information
  1. Casey P Shannon: Prevention of Organ Failure (PROOF) Centre of Excellence and Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
  2. Travis M Blimkie: Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
  3. Rym Ben-Othman: Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
  4. Nicole Gladish: Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
  5. Nelly Amenyogbe: Telethon Kids Institute, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia.
  6. Sibyl Drissler: Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
  7. Rachel D Edgar: Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
  8. Queenie Chan: Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
  9. Mel Krajden: British Columbia Centre for Disease Control, Vancouver, BC, Canada.
  10. Leonard J Foster: Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
  11. Michael S Kobor: Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
  12. William W Mohn: Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
  13. Ryan R Brinkman: Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
  14. Kim-Anh Le Cao: Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia.
  15. Richard H Scheuermann: Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States.
  16. Scott J Tebbutt: Prevention of Organ Failure (PROOF) Centre of Excellence and Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
  17. Robert E W Hancock: Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
  18. Wayne C Koff: Human Vaccines Project, New York, NY, United States.
  19. Tobias R Kollmann: Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
  20. Manish Sadarangani: Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
  21. Amy Huei-Yi Lee: Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.

Abstract

Background: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts.
Methods: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres.
Results: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response.
Conclusion: This study provides further evidence that baseline cellular and molecular characteristics of an individual's immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets.

Keywords

References

  1. Epigenetics. 2020 Jun - Jul;15(6-7):555-593 [PMID: 31914857]
  2. Cytokine. 2017 Apr;92:24-32 [PMID: 28088614]
  3. Genes Dev. 2010 Dec 1;24(23):2640-53 [PMID: 21123651]
  4. World J Gastroenterol. 2016 Dec 21;22(47):10341-10352 [PMID: 28058014]
  5. Cell Microbiol. 2001 Dec;3(12):773-84 [PMID: 11736990]
  6. Cell Mol Immunol. 2017 Sep;14(9):721-723 [PMID: 28552903]
  7. Nat Struct Biol. 2003 Nov;10(11):966-71 [PMID: 14528293]
  8. Liver Int. 2013 Aug;33(7):1008-18 [PMID: 23522085]
  9. Nat Commun. 2016 Jan 08;7:10369 [PMID: 26742691]
  10. Exp Dermatol. 2004 May;13(5):316-25 [PMID: 15140022]
  11. ISME J. 2018 Jun;12(7):1631-1641 [PMID: 29434315]
  12. Database (Oxford). 2011 Jul 23;2011:bar030 [PMID: 21785142]
  13. MMWR Morb Mortal Wkly Rep. 2018 Jul 20;67(28):773-777 [PMID: 30025413]
  14. Immunity. 2017 Nov 21;47(5):848-861.e5 [PMID: 29126798]
  15. Cell. 2014 Apr 10;157(2):499-513 [PMID: 24725414]
  16. Amino Acids. 2015 Dec;47(12):2583-92 [PMID: 26215734]
  17. J Allergy Clin Immunol. 2009 Sep;124(3):528-35, 535.e1-5 [PMID: 19541353]
  18. J Mol Biol. 2018 Jan 19;430(2):217-237 [PMID: 28987733]
  19. Nature. 2007 Apr 19;446(7138):916-920 [PMID: 17392790]
  20. BMC Genomics. 2012 Nov 17;13:636 [PMID: 23157493]
  21. Curr Opin Immunol. 2009 Aug;21(4):418-24 [PMID: 19570667]
  22. Gut. 2007 Nov;56(11):1572-8 [PMID: 17566017]
  23. BMC Bioinformatics. 2011 Jun 22;12:253 [PMID: 21693065]
  24. EMBO J. 1992 Oct;11(10):3533-40 [PMID: 1382975]
  25. Bioinformatics. 2019 Sep 1;35(17):3055-3062 [PMID: 30657866]
  26. J Immunol. 2006 Dec 15;177(12):8301-5 [PMID: 17142725]
  27. J Clin Invest. 2010 Feb;120(2):570-81 [PMID: 20051628]
  28. PLoS Pathog. 2013;9(8):e1003533 [PMID: 23950712]
  29. PeerJ. 2013 Dec 19;1:e229 [PMID: 24432194]
  30. Vaccine. 2000 Nov 22;19(7-8):877-85 [PMID: 11115711]
  31. Cell Death Dis. 2016 Jun 02;7(6):e2239 [PMID: 27253403]
  32. Bioinformatics. 2019 Jan 1;35(1):95-103 [PMID: 30561547]
  33. Vaccines (Basel). 2016 Jun 29;4(3): [PMID: 27367734]
  34. Biostatistics. 2014 Jul;15(3):569-83 [PMID: 24550197]
  35. Metabolomics. 2010 Mar;6(1):119-128 [PMID: 20339442]
  36. Sci Rep. 2017 Jul 3;7(1):4521 [PMID: 28674435]
  37. Front Immunol. 2020 Nov 04;11:580373 [PMID: 33250895]
  38. Traffic. 2012 Aug;13(8):1053-61 [PMID: 22577865]
  39. Nat Protoc. 2015 Jun;10(6):823-44 [PMID: 25950236]
  40. BMC Bioinformatics. 2012 Dec 06;13:325 [PMID: 23216942]
  41. Front Immunol. 2013 Jun 18;4:148 [PMID: 23785369]
  42. J Immunol. 2017 May 15;198(10):3791-3800 [PMID: 28483987]
  43. Aging Cell. 2019 Dec;18(6):e13028 [PMID: 31496122]
  44. PLoS Comput Biol. 2017 Nov 3;13(11):e1005752 [PMID: 29099853]
  45. Clin Exp Immunol. 1995 Sep;101(3):387-9 [PMID: 7664483]
  46. World J Gastroenterol. 2008 Apr 28;14(16):2529-33 [PMID: 18442200]
  47. Cell Death Dis. 2017 Feb 23;8(2):e2622 [PMID: 28230865]
  48. Immunol Rev. 2017 Jan;275(1):49-61 [PMID: 28133798]
  49. World J Hepatol. 2015 Aug 28;7(18):2127-32 [PMID: 26328023]
  50. Nat Commun. 2019 Mar 12;10(1):1092 [PMID: 30862783]
  51. Clin Invest Med. 2008;31(3):E123-30 [PMID: 18544275]
  52. Vaccine. 2013 May 17;31(21):2506-16 [PMID: 23257713]
  53. Nat Commun. 2014 Dec 15;5:5340 [PMID: 25500532]
  54. Exp Gerontol. 2018 May;105:94-100 [PMID: 29360511]
  55. Gut Pathog. 2013 Aug 13;5(1):23 [PMID: 23941657]
  56. mSystems. 2018 Nov 6;3(6): [PMID: 30417112]
  57. Trends Immunol. 2020 Jun;41(6):457-465 [PMID: 32340868]
  58. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  59. Nucleic Acids Res. 2019 Jul 2;47(W1):W234-W241 [PMID: 30931480]
  60. Mol Cell. 2015 Sep 17;59(6):891-903 [PMID: 26300263]
  61. Cell Rep. 2016 Jul 12;16(2):405-418 [PMID: 27346349]
  62. Cell. 2007 Apr 6;129(1):45-56 [PMID: 17418785]
  63. Nat Med. 2020 Mar;26(3):326-332 [PMID: 32066978]
  64. Nature. 2019 May;569(7758):663-671 [PMID: 31142858]
  65. Nature. 2013 Dec 19;504(7480):446-50 [PMID: 24226770]

Grants

  1. U19 AI118608/NIAID NIH HHS

MeSH Term

Adult
Aged
Epigenesis, Genetic
Epigenomics
Feces
Female
Gastrointestinal Microbiome
Gene Expression Profiling
Gene Regulatory Networks
Genomics
Hepatitis B
Hepatitis B Antibodies
Hepatitis B Vaccines
Humans
Immunogenicity, Vaccine
Male
Middle Aged
Prospective Studies
Protein Interaction Maps
Proteomics
Systems Biology
Time Factors
Transcriptome
Treatment Outcome
Vaccination

Chemicals

Engerix-B
Hepatitis B Antibodies
Hepatitis B Vaccines