SARS-CoV-2 infection and replication in human gastric organoids.

Giovanni Giuseppe Giobbe, Francesco Bonfante, Brendan C Jones, Onelia Gagliano, Camilla Luni, Elisa Zambaiti, Silvia Perin, Cecilia Laterza, Georg Busslinger, Hannah Stuart, Matteo Pagliari, Alessio Bortolami, Eva Mazzetto, Anna Manfredi, Chiara Colantuono, Lucio Di Filippo, Alessandro Filippo Pellegata, Valentina Panzarin, Nikhil Thapar, Vivian Sze Wing Li, Simon Eaton, Davide Cacchiarelli, Hans Clevers, Nicola Elvassore, Paolo De Coppi
Author Information
  1. Giovanni Giuseppe Giobbe: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. g.giobbe@ucl.ac.uk. ORCID
  2. Francesco Bonfante: Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy. ORCID
  3. Brendan C Jones: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. ORCID
  4. Onelia Gagliano: Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
  5. Camilla Luni: Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China. ORCID
  6. Elisa Zambaiti: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. ORCID
  7. Silvia Perin: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. ORCID
  8. Cecilia Laterza: Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
  9. Georg Busslinger: Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands. ORCID
  10. Hannah Stuart: Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
  11. Matteo Pagliari: Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
  12. Alessio Bortolami: Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy. ORCID
  13. Eva Mazzetto: Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy. ORCID
  14. Anna Manfredi: Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
  15. Chiara Colantuono: Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
  16. Lucio Di Filippo: Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
  17. Alessandro Filippo Pellegata: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. ORCID
  18. Valentina Panzarin: Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
  19. Nikhil Thapar: Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia.
  20. Vivian Sze Wing Li: Stem Cell and Cancer Biology Lab, the Francis Crick Institute, London, UK. ORCID
  21. Simon Eaton: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. ORCID
  22. Davide Cacchiarelli: Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
  23. Hans Clevers: Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands. ORCID
  24. Nicola Elvassore: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. n.elvassore@ucl.ac.uk. ORCID
  25. Paolo De Coppi: Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK. p.decoppi@ucl.ac.uk. ORCID

Abstract

COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.

References

  1. Lancet Gastroenterol Hepatol. 2020 May;5(5):434-435 [PMID: 32199469]
  2. Nat Cell Biol. 2016 Mar;18(3):246-54 [PMID: 26911908]
  3. Cell Death Dis. 2012 Mar 08;3:e277 [PMID: 22402601]
  4. J Clin Invest. 2020 Sep 1;130(9):4947-4953 [PMID: 32573498]
  5. Gut. 2020 Jun;69(6):997-1001 [PMID: 32241899]
  6. Cell Stem Cell. 2013 Dec 5;13(6):734-44 [PMID: 24139758]
  7. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  8. Lancet Child Adolesc Health. 2020 Jul;4(7):e19-e20 [PMID: 32442420]
  9. Cell Rep. 2021 Mar 9;34(10):108819 [PMID: 33691112]
  10. Pediatr Surg Int. 2021 Mar;37(3):317-324 [PMID: 33495862]
  11. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  12. J Virol. 2019 Oct 15;93(21): [PMID: 31434731]
  13. Lancet. 2020 May 23;395(10237):1607-1608 [PMID: 32386565]
  14. Nature. 2020 Jun;582(7813):557-560 [PMID: 32340022]
  15. Front Med (Lausanne). 2021 Jan 14;7:597967 [PMID: 33521016]
  16. Lancet. 2020 Mar 7;395(10226):809-815 [PMID: 32151335]
  17. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  18. Nat Biotechnol. 2022 Mar;40(3):319-324 [PMID: 34408314]
  19. Nat Cell Biol. 2018 Jun;20(6):721-734 [PMID: 29802404]
  20. Cell Rep. 2019 Feb 26;26(9):2509-2520.e4 [PMID: 30811997]
  21. Fetal Pediatr Pathol. 2021 Feb;40(1):80-92 [PMID: 33356716]
  22. J Mol Biol. 2008 Feb 8;376(1):23-34 [PMID: 18155731]
  23. Nat Med. 2020 Jul;26(7):1077-1083 [PMID: 32405028]
  24. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  25. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  26. Nature. 2014 Dec 18;516(7531):400-4 [PMID: 25363776]
  27. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  28. Nat Commun. 2019 Dec 11;10(1):5658 [PMID: 31827102]
  29. Am J Obstet Gynecol MFM. 2020 Aug;2(3):100145 [PMID: 32427221]
  30. Cell Rep. 2020 Sep 22;32(12):108185 [PMID: 32941788]
  31. Gut. 2016 Feb;65(2):202-13 [PMID: 25539675]
  32. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  33. Front Immunol. 2020 Jun 10;11:1372 [PMID: 32595654]
  34. Cell Stem Cell. 2018 Dec 6;23(6):882-897.e11 [PMID: 30344100]
  35. Sci Rep. 2019 Aug 13;9(1):11780 [PMID: 31409879]
  36. BMJ Open Gastroenterol. 2021 Feb;8(1): [PMID: 33627313]
  37. Cell. 2018 Nov 29;175(6):1591-1606.e19 [PMID: 30500538]
  38. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7 [PMID: 32579880]
  39. Aliment Pharmacol Ther. 2020 May;51(9):843-851 [PMID: 32222988]
  40. Am J Obstet Gynecol. 2021 Jan;224(1):35-53.e3 [PMID: 32739398]
  41. Gastroenterology. 2015 Jan;148(1):126-136.e6 [PMID: 25307862]
  42. Emerg Microbes Infect. 2020 Dec;9(1):2501-2508 [PMID: 33161824]
  43. Int J Oral Sci. 2020 Feb 24;12(1):8 [PMID: 32094336]
  44. Science. 2020 Jul 3;369(6499):50-54 [PMID: 32358202]
  45. Cell Stem Cell. 2010 Jan 8;6(1):25-36 [PMID: 20085740]
  46. Nucleic Acids Res. 2013 Oct;41(18):e170 [PMID: 23921631]
  47. Elife. 2020 Jul 14;9: [PMID: 32662421]
  48. Gastroenterology. 2020 May;158(6):1831-1833.e3 [PMID: 32142773]

Grants

  1. MR/R006237/1/Medical Research Council
  2. /Wellcome Trust

MeSH Term

Aborted Fetus
Aged
Animals
COVID-19
Cell Line
Child
Child, Preschool
Chlorocebus aethiops
Humans
Infant
Intestinal Mucosa
Middle Aged
Organoids
SARS-CoV-2
Stomach
Virus Replication