SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya.

Jingjing Yue, Robert VanBuren, Juan Liu, Jingping Fang, Xingtan Zhang, Zhenyang Liao, Ching Man Wai, Xiuming Xu, Shuai Chen, Shengchen Zhang, Xiaokai Ma, Yaying Ma, Hongying Yu, Jing Lin, Ping Zhou, Yongji Huang, Ban Deng, Fang Deng, Xiaobing Zhao, Hansong Yan, Mahpara Fatima, Dessireé Zerpa-Catanho, Xiaodan Zhang, Zhicong Lin, Mei Yang, Nancy J Chen, Eric Mora-Newcomer, Patricia Quesada-Rojas, Antonio Bogantes, Víctor M Jiménez, Haibao Tang, Jisen Zhang, Ming-Li Wang, Robert E Paull, Qingyi Yu, Ray Ming
Author Information
  1. Jingjing Yue: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  2. Robert VanBuren: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  3. Juan Liu: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  4. Jingping Fang: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  5. Xingtan Zhang: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  6. Zhenyang Liao: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  7. Ching Man Wai: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ORCID
  8. Xiuming Xu: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  9. Shuai Chen: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  10. Shengchen Zhang: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  11. Xiaokai Ma: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  12. Yaying Ma: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  13. Hongying Yu: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  14. Jing Lin: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  15. Ping Zhou: Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China. ORCID
  16. Yongji Huang: Institute of Oceanography, Minjiang University, Fuzhou, China. ORCID
  17. Ban Deng: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  18. Fang Deng: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  19. Xiaobing Zhao: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  20. Hansong Yan: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  21. Mahpara Fatima: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  22. Dessireé Zerpa-Catanho: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  23. Xiaodan Zhang: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  24. Zhicong Lin: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  25. Mei Yang: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
  26. Nancy J Chen: Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
  27. Eric Mora-Newcomer: Estación Experimental Agrícola Fabio Baudrit Moreno, Universidad de Costa Rica, Alajuela, Costa Rica. ORCID
  28. Patricia Quesada-Rojas: Estación Experimental Agrícola Fabio Baudrit Moreno, Universidad de Costa Rica, Alajuela, Costa Rica.
  29. Antonio Bogantes: Estación Experimental Los Diamantes, Instituto de Innovación y Transferencia de Tecnología Agropecuaria, Guápiles, Costa Rica.
  30. Víctor M Jiménez: CIGRAS, Universidad de Costa Rica, San Pedro, Costa Rica. ORCID
  31. Haibao Tang: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  32. Jisen Zhang: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  33. Ming-Li Wang: Hawaii Agriculture Research Center, Kunia, HI, USA.
  34. Robert E Paull: Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
  35. Qingyi Yu: Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX, USA. ORCID
  36. Ray Ming: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. rayming@illinois.edu. ORCID

Abstract

Transgenic papaya is widely publicized for controlling papaya ringspot virus. However, the impact of particle bombardment on the genome remains unknown. The transgenic SunUp and its progenitor Sunset genomes were assembled into 351.5 and 350.3 Mb in nine chromosomes, respectively. We identified a 1.64 Mb insertion containing three transgenic insertions in SunUp chromosome 5, consisting of 52 nuclear-plastid, 21 nuclear-mitochondrial and 1 nuclear genomic fragments. A 591.9 kb fragment in chromosome 5 was translocated into the 1.64 Mb insertion. We assembled a gapless 9.8 Mb hermaphrodite-specific region of the Y chromosome and its 6.0 Mb X counterpart. Resequencing 86 genomes revealed three distinct groups, validating their geographic origin and breeding history. We identified 147 selective sweeps and defined the essential role of zeta-carotene desaturase in carotenoid accumulation during domestication. Our findings elucidated the impact of particle bombardment and improved our understanding of sex chromosomes and domestication to expedite papaya improvement.

References

Liebman, B. Nutritional aspects of fruit. Nutrition Action Healthletter 1, 10–11 (1992).
Chandrika, U. G., Jansz, E. R., Wickramasinghe, S. M. D. N. & Warnasuriya, N. D. Carotenoids in yellow- and red-fleshed papaya (Carica papaya L). J. Sci. Food Agric. 83, 1279–1282 (2003). [DOI: 10.1002/jsfa.1533]
Fuentes, G. & Santamaría, J. M. in Genetics and Genomics of Papaya (eds Ming, R. & Moore, P. H.) 3–15 (Springer, 2014).
Manshardt, R. in Genetics and Genomics of Papaya (eds Ming, R. & Moore, P. H.) 95–113 (Springer, 2014).
Liu, Z. et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427, 348–352 (2004). [PMID: 14737167]
Wang, J. et al. Sequencing papaya X and Y chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl Acad. Sci. USA 109, 13710–13715 (2012). [PMID: 22869747]
VanBuren, R. et al. Origin and domestication of papaya Yh chromosome. Genome Res. 25, 524–533 (2015). [PMID: 25762551]
Gonsalves, D. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36, 415–437 (1998). [PMID: 15012507]
Manshardt, R. UH Rainbow’ Papaya. Germplasm, G-1 (University of Hawaii College of Tropical Agriculture and Human Resources, 1998).
Fitch, M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L. & Sanford, J. C. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat. Biotechnol. 10, 1466–1472 (1992). [DOI: 10.1038/nbt1192-1466]
Fitch, M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L. & Sanford, J. C. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9, 189–194 (1990). [PMID: 24226700]
Kawakatsu, T., Kawahara, Y., Itoh, T. & Takaiwa, F. A whole-genome analysis of a transgenic rice seed-based edible vaccine against cedar pollen allergy. DNA Res. 20, 623–631 (2013). [PMID: 23956243]
Suzuki, J. Y. et al. Characterization of insertion sites in Rainbow papaya, the first commercialized transgenic fruit crop. Tropical Plant Biol. 1, 293–309 (2008). [DOI: 10.1007/s12042-008-9023-0]
Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996 (2008). [PMID: 18432245]
Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018). [PMID: 29431738]
Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5, 833–845 (2019). [PMID: 31383970]
Na, J. K. et al. Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genom. 13, 176 (2012).
Zhou, L., Christopher, D. A. & Paull, R. E. Defoliation and fruit removal effects on papaya fruit production, sugar accumulation, and sucrose metabolism. J. Am. Soc. Hortic. Sci. 125, 644–652 (2000). [DOI: 10.21273/JASHS.125.5.644]
Klein, T. M., Wolf, E. D., Wu, R. & Sanford, J. C. High-velocity microprojectiles for delivering nucleic acids into living cells. Biotechnology 24, 384–386 (1992). [PMID: 1422046]
Hirochika, H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12, 2521–2528 (1993). [PMID: 8389699]
Hirochika, H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol. 35, 231–240 (1997). [PMID: 9291976]
Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2012). [DOI: 10.1038/nrg3374]
Miguel, C. & Marum, L. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J. Exp. Bot. 62, 3713–3725 (2011). [PMID: 21617249]
Chen, S. et al. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J. 36, 105–113 (2003). [PMID: 12974815]
Sawasaki, T., Takahashi, M., Goshima, N. & Morikawa, H. Structures of transgene loci in transgenic Arabidopsis plants obtained by particle bombardment: junction regions can bind to nuclear matrices. Gene 218, 27–35 (1998). [PMID: 9751799]
Stegemann, S., Hartmann, S., Ruf, S. & Bock, R. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl Acad. Sci. USA 100, 8828–8833 (2003). [PMID: 12817081]
Ma, H. et al. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166, 419–436 (2004). [PMID: 15020433]
Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014). [PMID: 25305757]
Sun, X. et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 52, 1423–1432 (2020). [PMID: 33139952]
Wu, G. A. et al. Genomics of the origin and evolution of Citrus. Nature 554, 311–316 (2018). [PMID: 29414943]
Zerpa-Catanho, D., Zhang, X., Song, J., Hernandez, A. G. & Ming, R. Ultra-long DNA molecule isolation from plant nuclei for ultra-long read genome sequencing. STAR Protoc. 2, 100343 (2021).
Xie, T. et al. De novo plant genome assembly based on chromatin interactions: a case study of Arabidopsis thaliana. Mol. Plant 8, 489–492 (2015). [PMID: 25667002]
Zhang, X. et al. Genomes of the Banyan tree and pollinator wasp provide insights into fig–wasp coevolution. Cell 183, 875–889 (2020). [PMID: 33035453]
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015). [PMID: 26619908]
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
Tamazian, G. et al. Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences. Gigascience 5, 38 (2016). [PMID: 27549770]
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). [PMID: 19451168]
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017). [PMID: 28336562]
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). [PMID: 26059717]
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020). [PMID: 32928274]
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021). [PMID: 33911273]
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017). [PMID: 28298431]
Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002). [PMID: 12176934]
Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005). [PMID: 15961478]
Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass–a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25, 1329–1330 (2009). [PMID: 19349283]
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999). [PMID: 9862982]
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). [PMID: 2231712]
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005). [PMID: 15728110]
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). [PMID: 19261174]
Yang, X. & Li, L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27, 2614–2615 (2011). [PMID: 21775303]
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012). [PMID: 22217600]
Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016). [PMID: 27072794]
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). [PMID: 29750242]
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018). [PMID: 29713083]
Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018). [PMID: 29373581]
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013). [PMID: 23845962]
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). [PMID: 25516281]
Brown, J. E., Bauman, J. M., Lawrie, J. F., Rocha, O. J. & Moore, R. C. The structure of morphological and genetic diversity in natural populations of Carica papaya (Caricaceae) in Costa Rica. Biotropica 44, 179–188 (2012). [DOI: 10.1111/j.1744-7429.2011.00779.x]
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). [PMID: 24695404]
VanBuren, R. et al. Extremely low nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep. Genome Biol. 17, 230 (2016).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). [DOI: 10.4161/fly.19695]
Lee, T.-H., Guo, H., Wang, X., Kim, C. & Paterson, A. H. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom. 15, 162 (2014). [DOI: 10.1186/1471-2164-15-162]
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016). [PMID: 27004904]
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). [PMID: 21653522]
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). [PMID: 17701901]
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003). [PMID: 12930761]
Chen, L. Y. et al. The bracteatus pineapple genome and domestication of clonally propagated crops. Nat. Genet. 51, 1549–1558 (2019). [PMID: 31570895]
Cockerham, C. C. & Weir, B. S. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40, 157–164 (1984). [PMID: 6733226]

MeSH Term

Carica
Chromosomes, Plant
Domestication
Plant Breeding
Sex Chromosomes