Genome Assembly and Population Resequencing Reveal the Geographical Divergence of Shanmei (Rubus corchorifolius).

Yinqing Yang, Kang Zhang, Ya Xiao, Lingkui Zhang, Yile Huang, Xing Li, Shumin Chen, Yansong Peng, Shuhua Yang, Yongbo Liu, Feng Cheng
Author Information
  1. Yinqing Yang: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
  2. Kang Zhang: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
  3. Ya Xiao: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China; Biotechnology Research Center, Xiangxi Academy of Agricultural Sciences, Jishou 416000, China.
  4. Lingkui Zhang: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
  5. Yile Huang: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
  6. Xing Li: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
  7. Shumin Chen: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
  8. Yansong Peng: Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
  9. Shuhua Yang: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Electronic address: yangshuhua@caas.cn.
  10. Yongbo Liu: State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address: liuyb@craes.org.cn.
  11. Feng Cheng: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Electronic address: chengfeng@caas.cn.

Abstract

Rubus corchorifolius (Shanmei or mountain berry, 2n = 14) is widely distributed in China, and its fruits possess high nutritional and medicinal values. Here, we reported a high-quality chromosome-scale genome assembly of Shanmei, with contig size of 215.69 Mb and 26,696 genes. Genome comparison among Rosaceae species showed that Shanmei and Fupenzi (Rubus chingii Hu) were most closely related, followed by blackberry (Rubus occidentalis), and that environmental adaptation-related genes were expanded in the Shanmei genome. Further resequencing of 101 samples of Shanmei collected from four regions in the provinces of Yunnan, Hunan, Jiangxi, and Sichuan in China revealed that among these samples, the Hunan population of Shanmei possessed the highest diversity and represented the more ancestral population. Moreover, the Yunnan population underwent strong selection based on the nucleotide diversity, linkage disequilibrium, and historical effective population size analyses. Furthermore, genes from candidate genomic regions that showed strong divergence were significantly enriched in the flavonoid biosynthesis and plant hormone signal transduction pathways, indicating the genetic basis of adaptation of Shanmei to the local environment. The high-quality assembled genome and the variome dataset of Shanmei provide valuable resources for breeding applications and for elucidating the genome evolution and ecological adaptation of Rubus species.

Keywords

References

Plant Physiol. 2018 Feb;176(2):1410-1422 [PMID: 29233850]
Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
Physiol Plant. 2002 Feb;114(2):251-258 [PMID: 11903972]
Genomics Proteomics Bioinformatics. 2021 Aug;19(4):584-589 [PMID: 34175476]
Genomics Proteomics Bioinformatics. 2021 Aug;19(4):578-583 [PMID: 34400360]
PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
Nat Commun. 2021 Feb 18;12(1):1144 [PMID: 33602909]
Nat Genet. 2011 Feb;43(2):109-16 [PMID: 21186353]
Food Chem. 2019 Jul 30;287:232-240 [PMID: 30857694]
Int J Mol Sci. 2018 Jan 24;19(2): [PMID: 29364145]
Bioinformatics. 2003 Jan 22;19(2):301-2 [PMID: 12538260]
Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
Bioengineered. 2020 Dec;11(1):103-115 [PMID: 31903833]
Bioinformatics. 2012 Dec 15;28(24):3326-8 [PMID: 23060615]
Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
Nat Commun. 2016 Jan 05;7:10269 [PMID: 26728313]
Nat Biotechnol. 2014 Jul;32(7):656-62 [PMID: 24908277]
Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
Front Plant Sci. 2016 Jun 29;7:968 [PMID: 27446191]
Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
Front Plant Sci. 2019 Dec 20;10:1615 [PMID: 31921259]
BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
Front Plant Sci. 2012 Aug 30;3:198 [PMID: 22969786]
Genome Res. 2017 May;27(5):737-746 [PMID: 28100585]
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
Nucleic Acids Res. 2005 Nov 28;33(20):6494-506 [PMID: 16314312]
BMC Plant Biol. 2014 Aug 20;14:227 [PMID: 25135116]
Nat Commun. 2019 Mar 13;10(1):1190 [PMID: 30867414]
Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
Nat Genet. 2018 Jun;50(6):772-777 [PMID: 29713014]
Cell Syst. 2016 Jul;3(1):99-101 [PMID: 27467250]
Plant Physiol. 2005 Dec;139(4):1840-52 [PMID: 16299184]
Mol Plant. 2011 Jan;4(1):70-82 [PMID: 20829305]
Mol Ecol Resour. 2017 Jul;17(4):631-641 [PMID: 27718335]
Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
Mol Plant. 2013 Jul;6(4):1376-9 [PMID: 23371934]
Plant J. 2021 Sep;107(5):1466-1477 [PMID: 34174125]
Curr Protoc Bioinformatics. 2019 Mar;65(1):e57 [PMID: 30466165]
Plant Physiol. 2019 Sep;181(1):63-84 [PMID: 31289215]
Genome Biol. 2019 Dec 16;20(1):278 [PMID: 31842956]
Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
Plant J. 2016 Sep;87(6):535-47 [PMID: 27228578]
Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
J Agric Food Chem. 2017 Mar 1;65(8):1566-1573 [PMID: 28169543]
Front Plant Sci. 2020 Feb 06;11:38 [PMID: 32117377]
Nat Commun. 2021 Jun 14;12(1):3604 [PMID: 34127667]
PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
Plant Biotechnol J. 2020 Dec;18(12):2545-2558 [PMID: 32559013]
Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
Genome Res. 2013 Feb;23(2):396-408 [PMID: 23149293]
Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
PeerJ. 2019 Mar 14;7:e6520 [PMID: 30886769]
Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
Mol Biol Evol. 2013 Aug;30(8):1987-97 [PMID: 23709260]
Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
Nat Commun. 2017 Aug 15;8(1):249 [PMID: 28811498]
Plant Cell. 2012 May;24(5):2225-36 [PMID: 22643122]
Genome Biol. 2015 Aug 06;16:157 [PMID: 26243257]
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):E11188-E11197 [PMID: 30413622]

MeSH Term

Rubus
China
Sequence Analysis, DNA
Genomics
Linkage Disequilibrium