TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies.

Mingming Lu, Yadong Zhang, Fengchun Yang, Jialin Mai, Qianwen Gao, Xiaowei Xu, Hongyu Kang, Li Hou, Yunfei Shang, Qiheng Qain, Jie Liu, Meiye Jiang, Hao Zhang, Congfan Bu, Jinyue Wang, Zhewen Zhang, Zaichao Zhang, Jingyao Zeng, Jiao Li, Jingfa Xiao
Author Information
  1. Mingming Lu: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  2. Yadong Zhang: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China. ORCID
  3. Fengchun Yang: Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China.
  4. Jialin Mai: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  5. Qianwen Gao: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  6. Xiaowei Xu: Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China.
  7. Hongyu Kang: Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China.
  8. Li Hou: Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China.
  9. Yunfei Shang: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  10. Qiheng Qain: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  11. Jie Liu: North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China.
  12. Meiye Jiang: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  13. Hao Zhang: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China. ORCID
  14. Congfan Bu: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  15. Jinyue Wang: Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
  16. Zhewen Zhang: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  17. Zaichao Zhang: Department of Biology, The University of Western Ontario, London, OntarioN6A 5B7, Canada.
  18. Jingyao Zeng: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China. ORCID
  19. Jiao Li: Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China.
  20. Jingfa Xiao: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China. ORCID

Abstract

Transcriptome-wide association studies (TWASs), as a practical and prevalent approach for detecting the associations between genetically regulated genes and traits, are now leading to a better understanding of the complex mechanisms of genetic variants in regulating various diseases and traits. Despite the ever-increasing TWAS outputs, there is still a lack of databases curating massive public TWAS information and knowledge. To fill this gap, here we present TWAS Atlas (https://ngdc.cncb.ac.cn/twas/), an integrated knowledgebase of TWAS findings manually curated from extensive literature. In the current implementation, TWAS Atlas collects 401,266 high-quality human gene-trait associations from 200 publications, covering 22,247 genes and 257 traits across 135 tissue types. In particular, an interactive knowledge graph of the collected gene-trait associations is constructed together with single nucleotide polymorphism (SNP)-gene associations to build up comprehensive regulatory networks at multi-omics levels. In addition, TWAS Atlas, as a user-friendly web interface, efficiently enables users to browse, search and download all association information, relevant research metadata and annotation information of interest. Taken together, TWAS Atlas is of great value for promoting the utility and availability of TWAS results in explaining the complex genetic basis as well as providing new insights for human health and disease research.

References

  1. Nat Rev Mol Cell Biol. 2011 Feb;12(2):119-25 [PMID: 21224886]
  2. PLoS Genet. 2021 Feb 26;17(2):e1009405 [PMID: 33635859]
  3. Science. 2020 Sep 11;369(6509): [PMID: 32913075]
  4. Front Genet. 2021 Sep 30;12:713230 [PMID: 34659337]
  5. Nucleic Acids Res. 2014 Jan;42(Database issue):D975-9 [PMID: 24297256]
  6. Cell. 2016 Nov 17;167(5):1398-1414.e24 [PMID: 27863251]
  7. Nat Commun. 2018 Feb 26;9(1):838 [PMID: 29483533]
  8. Nat Genet. 2016 May;48(5):481-7 [PMID: 27019110]
  9. Nucleic Acids Res. 2022 Jan 7;50(D1):D129-D140 [PMID: 34850121]
  10. Nat Genet. 2016 Mar;48(3):245-52 [PMID: 26854917]
  11. Am J Hum Genet. 2017 Jul 6;101(1):5-22 [PMID: 28686856]
  12. Nucleic Acids Res. 2022 Jan 7;50(D1):D1123-D1130 [PMID: 34669946]
  13. Nat Genet. 2017 May;49(5):680-691 [PMID: 28346442]
  14. Front Genet. 2020 May 13;11:424 [PMID: 32477401]
  15. Neurosci Bull. 2022 Jun;38(6):677-691 [PMID: 35306613]
  16. Brain Sci. 2020 Nov 16;10(11): [PMID: 33207722]
  17. J Biomed Inform. 2005 Apr;38(2):114-29 [PMID: 15797001]
  18. Nucleic Acids Res. 2001 Jan 1;29(1):308-11 [PMID: 11125122]
  19. Am J Hum Genet. 2018 Aug 2;103(2):232-244 [PMID: 30057032]
  20. Neurobiol Aging. 2016 May;41:200.e13-200.e20 [PMID: 27036079]
  21. Nucleic Acids Res. 2015 Jan;43(Database issue):D789-98 [PMID: 25428349]
  22. BMC Genomics. 2012 Sep 06;13:458 [PMID: 22950410]
  23. Nat Genet. 2021 Mar;53(3):304-312 [PMID: 33664506]
  24. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70 [PMID: 14681409]
  25. Front Genet. 2019 Jan 07;9:653 [PMID: 30666269]
  26. Biochem J. 2001 Apr 1;355(Pt 1):19-28 [PMID: 11256944]
  27. Curr Neurol Neurosci Rep. 2017 Aug 21;17(10):78 [PMID: 28825204]
  28. Am J Hum Genet. 2017 Mar 2;100(3):473-487 [PMID: 28238358]
  29. Nat Genet. 2019 Sep;51(9):1339-1348 [PMID: 31427789]
  30. Nucleic Acids Res. 2014 Jan;42(Database issue):D92-7 [PMID: 24297251]
  31. Nat Genet. 2018 Apr;50(4):493-497 [PMID: 29610479]
  32. Nat Genet. 2019 Apr;51(4):592-599 [PMID: 30926968]
  33. Nat Genet. 2013 Jun;45(6):580-5 [PMID: 23715323]
  34. Cancer Res. 2018 Sep 15;78(18):5419-5430 [PMID: 30054336]
  35. Nucleic Acids Res. 2017 Jan 4;45(D1):D865-D876 [PMID: 27899602]
  36. Am J Hum Genet. 2018 May 3;102(5):717-730 [PMID: 29727686]
  37. Clin Genet. 2020 Jan;97(1):54-63 [PMID: 31099061]
  38. Nat Commun. 2019 Jul 24;10(1):3300 [PMID: 31341166]
  39. Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012 [PMID: 30445434]
  40. Nat Commun. 2013;4:1627 [PMID: 23535648]
  41. Nat Genet. 2019 May;51(5):815-823 [PMID: 31043753]
  42. Science. 2021 Nov 26;374(6571):1127-1133 [PMID: 34822289]
  43. PLoS Genet. 2021 Mar 8;17(3):e1009398 [PMID: 33684137]
  44. Nat Genet. 2020 Nov;52(11):1239-1246 [PMID: 33020666]
  45. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612 [PMID: 33237311]
  46. Nat Commun. 2019 Oct 1;10(1):4450 [PMID: 31575856]
  47. Nat Genet. 2013 Oct;45(10):1113-20 [PMID: 24071849]
  48. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33200776]
  49. Bioinformatics. 2010 Apr 15;26(8):1112-8 [PMID: 20200009]
  50. Science. 2018 Dec 14;362(6420): [PMID: 30545856]
  51. Nat Genet. 2015 Sep;47(9):1091-8 [PMID: 26258848]
  52. Nucleic Acids Res. 2022 Jan 7;50(D1):D988-D995 [PMID: 34791404]
  53. Front Aging Neurosci. 2019 Aug 30;11:231 [PMID: 31551755]
  54. BMC Med. 2022 Jun 22;20(1):214 [PMID: 35729600]
  55. Nat Genet. 2021 Sep;53(9):1300-1310 [PMID: 34475573]

MeSH Term

Humans
Transcriptome
Quantitative Trait Loci
Genome-Wide Association Study
Phenotype
Knowledge Bases
Polymorphism, Single Nucleotide
Genetic Predisposition to Disease

Links to CNCB-NGDC Resources

Database Commons: DBC008198 (TWAS Atlas)

Word Cloud

Created with Highcharts 10.0.0TWASassociationsAtlasassociationtraitsinformationstudiesgenescomplexgeneticknowledgeknowledgebasecuratedhumangene-traittogetherresearchTranscriptome-wideTWASspracticalprevalentapproachdetectinggeneticallyregulatednowleadingbetterunderstandingmechanismsvariantsregulatingvariousdiseasesDespiteever-increasingoutputsstilllackdatabasescuratingmassivepublicfillgappresenthttps://ngdccncbaccn/twas/integratedfindingsmanuallyextensiveliteraturecurrentimplementationcollects401266high-quality200publicationscovering22247257across135tissuetypesparticularinteractivegraphcollectedconstructedsinglenucleotidepolymorphismSNP-genebuildcomprehensiveregulatorynetworksmulti-omicslevelsadditionuser-friendlywebinterfaceefficientlyenablesusersbrowsesearchdownloadrelevantmetadataannotationinterestTakengreatvaluepromotingutilityavailabilityresultsexplainingbasiswellprovidingnewinsightshealthdiseaseAtlas:transcriptome-wide

Similar Articles

Cited By (19)