A wild melon reference genome provides novel insights into the domestication of a key gene responsible for melon fruit acidity.

Xinxiu Chen, Hongbo Li, Yuanhua Dong, Yuanchao Xu, Kuipeng Xu, Qiqi Zhang, Zhiwang Yao, Qing Yu, Huimin Zhang, Zhonghua Zhang
Author Information
  1. Xinxiu Chen: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
  2. Hongbo Li: Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Shenzhen Branch, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China.
  3. Yuanhua Dong: College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  4. Yuanchao Xu: Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Shenzhen Branch, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China.
  5. Kuipeng Xu: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
  6. Qiqi Zhang: College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  7. Zhiwang Yao: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
  8. Qing Yu: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
  9. Huimin Zhang: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China. Zhanghm@qau.edu.cn.
  10. Zhonghua Zhang: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China. zhangzhonghua@caas.cn. ORCID

Abstract

KEY MESSAGE: A wild melon reference genome elucidates the genomic basis of fruit acidity domestication. Structural variants (SVs) have been reported to impose major effects on agronomic traits, representing a significant contributor to crop domestication. However, the landscape of SVs between wild and cultivated melons is elusive and how SVs have contributed to melon domestication remains largely unexplored. Here, we report a 379-Mb chromosome-scale genome of a wild progenitor melon accession "P84", with a contig N50 of 14.9 Mb. Genome comparison identifies 10,589 SVs between P84 and four cultivated melons with 6937 not characterized in previously analysis of 25 melon genome sequences. Furthermore, the population-scale genotyping of these SVs was determined in 1175 accessions, and 18 GWAS signals including fruit acidity, fruit length, fruit weight, fruit color and sex determination were detected. Based on these genotyped SVs, we identified 3317 highly diverged SVs between wild and cultivated melons, which could be the potential SVs associated with domestication-related traits. Furthermore, we identify novel SVs affecting fruit acidity and proposed the diverged evolutionary trajectories of CmPH, a key regulator of melon fruit acidity, during domestication and selection of different populations. These results will offer valuable resources for genomic studies and genetic improvement in melon.

References

Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, Van Der Knaap E, Schatz MC, Lippman ZB (2020) Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:145-161.e123. https://doi.org/10.1016/j.cell.2020.05.021 [DOI: 10.1016/j.cell.2020.05.021]
Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J (2015) Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genom 16:4. https://doi.org/10.1186/s12864-014-1196-3 [DOI: 10.1186/s12864-014-1196-3]
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573 [DOI: 10.1093/nar/27.2.573]
Branham SE, Levi A, Katawczik M, Fei Z, Wechter WP (2018) Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL. Theor Appl Genet 131:829–837. https://doi.org/10.1007/s00122-017-3039-5 [DOI: 10.1007/s00122-017-3039-5]
Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM (2020) An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Front Plant Sci 10:1815–1815. https://doi.org/10.3389/fpls.2019.01815 [DOI: 10.3389/fpls.2019.01815]
Chakraborty M, Emerson JJ, Macdonald SJ, Long AD (2019) Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nat Commun 10:4872. https://doi.org/10.1038/s41467-019-12884-1 [DOI: 10.1038/s41467-019-12884-1]
Chen M, Ma Y, Wu S, Zheng X, Kang H, Sang J, Xu X, Hao L, Li Z, Gong Z, Xiao J, Zhang Z, Zhao W, Bao Y (2021) Genome warehouse: a public repository housing genome-scale data. Genom Proteom Bioinf 19:584–589. https://doi.org/10.1016/j.gpb.2021.04.001 [DOI: 10.1016/j.gpb.2021.04.001]
Chen X, Shi X, Ai Q, Han J, Wang H, Fu Q (2022) Transcriptomic and metabolomic analyses reveal that exogenous strigolactones alleviate the response of melon root to cadmium stress. Hortic Plant J 8:637–649. https://doi.org/10.1016/j.hpj.2022.07.001 [DOI: 10.1016/j.hpj.2022.07.001]
Cheng H, Concepcion GT, Feng X, Zhang H, Li H (2021) Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18:170–175. https://doi.org/10.1038/s41592-020-01056-5 [DOI: 10.1038/s41592-020-01056-5]
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6:80–92. https://doi.org/10.4161/fly.19695 [DOI: 10.4161/fly.19695]
Clendennen SK, Kellogg JA, Wolff KA, Matsumura W, Peters S, Vanwinkle JE, Copes B, Pieper M, Kramer MG (1999) Genetic engineering of cantaloupe to reduce ethylene biosynthesis and control ripening. In: Kanellis AK, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D (eds) Biology and Biotechnology of the Plant Hormone Ethylene II. Springer, Netherlands, Dordrecht, pp 371–379 [DOI: 10.1007/978-94-011-4453-7_68]
Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baja R, Lev S, Sa’ar U, Davidovitz-Rikanati R, Baranes N, Bar E, Wolf D, Petreikov M, Shen S, Ben-Dor S, Rogachev I, Aharoni A, Ast T, Schuldiner M, Belausov E, Eshed R, Ophir R, Sherman A, Frei B, Neuhaus HE, Xu Y, Fei Z, Giovannoni J, Lewinsohn E, Tadmor Y, Paris HS, Katzir N, Burger Y, Schaffer AA (2014) The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nat Commun 5:4026. https://doi.org/10.1038/ncomms5026 [DOI: 10.1038/ncomms5026]
Cui L, Siskos L, Wang C, Schouten HJ, Visser RGF, Bai Y (2022) Breeding melon (Cucumis melo) with resistance to powdery mildew and downy mildew. Hortic Plant J 8:545–561. https://doi.org/10.1016/j.hpj.2022.07.006 [DOI: 10.1016/j.hpj.2022.07.006]
Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Net Rev Genet 14:390–403. https://doi.org/10.1038/nrg3454 [DOI: 10.1038/nrg3454]
Diaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R, Katzir N, Garcia-Mas J, Monforte AJ (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breeding 35:188. https://doi.org/10.1007/s11032-015-0381-7 [DOI: 10.1007/s11032-015-0381-7]
Díaz A, Martín-Hernández AM, Dolcet-Sanjuan R, Garcés-Claver A, Álvarez JM, Garcia-Mas J, Picó B, Monforte AJ (2017) Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theor Appl Genet 130:1837–1856. https://doi.org/10.1007/s00122-017-2928-y [DOI: 10.1007/s00122-017-2928-y]
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL (2017) De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92–95. https://doi.org/10.1126/science.aal3327 [DOI: 10.1126/science.aal3327]
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, Aiden EL (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3:95–98. https://doi.org/10.1016/j.cels.2016.07.002 [DOI: 10.1016/j.cels.2016.07.002]
Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa’ar U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Ya T, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 94:169–191. https://doi.org/10.1111/tpj.13838 [DOI: 10.1111/tpj.13838]
Goel M, Sun H, Jiao W-B, Schneeberger K (2019) SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol 20:277. https://doi.org/10.1186/s13059-019-1911-0 [DOI: 10.1186/s13059-019-1911-0]
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883 [DOI: 10.1038/nbt.1883]
Guan J, Xu Y, Yu Y, Fu J, Ren F, Guo J, Zhao J, Jiang Q, Wei J, Xie H (2021) Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biol 22:13. https://doi.org/10.1186/s13059-020-02239-1 [DOI: 10.1186/s13059-020-02239-1]
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, Salzberg SL, White O (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl Acids Res 31:5654–5666. https://doi.org/10.1093/nar/gkg770 [DOI: 10.1093/nar/gkg770]
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 9:R7. https://doi.org/10.1186/gb-2008-9-1-r7 [DOI: 10.1186/gb-2008-9-1-r7]
He Q, Tang S, Zhi H, Chen J, Zhang J, Liang H, Alam O, Li H, Zhang H, Xing L, Li X, Zhang W, Wang H, Shi J, Du H, Wu H, Wang L, Yang P, Xing L, Yan H, Song Z, Liu J, Wang H, Tian X, Qiao Z, Feng G, Guo R, Zhu W, Ren Y, Hao H, Li M, Zhang A, Guo E, Yan F, Li Q, Liu Y, Tian B, Zhao X, Jia R, Feng B, Zhang J, Wei J, Lai J, Jia G, Purugganan M, Diao X (2023) A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet 55:1232–1242. https://doi.org/10.1038/s41588-023-01423-w [DOI: 10.1038/s41588-023-01423-w]
Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, Nakagawa H, Sato T (2000) Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Plant Sci 159:173–181. https://doi.org/10.1016/S0168-9452(00)00298-3 [DOI: 10.1016/S0168-9452(00)00298-3]
Islam MR, Hossain MR, Jesse DMI, Jung H-J, Kim H-T, Park J-I, Nou I-S (2020) Development of molecular marker linked with bacterial fruit blotch resistance in melon (Cucumis melo L.). Genes (basel) 11:220. https://doi.org/10.3390/genes11020220 [DOI: 10.3390/genes11020220]
Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang XQ, Angessa TT, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M, Stein N (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588:284–289. https://doi.org/10.1038/s41586-020-2947-8 [DOI: 10.1038/s41586-020-2947-8]
Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:233–247. https://doi.org/10.1111/j.1095-8339.1980.tb01676.x [DOI: 10.1111/j.1095-8339.1980.tb01676.x]
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. https://doi.org/10.1093/bioinformatics/btu031 [DOI: 10.1093/bioinformatics/btu031]
Justine M, Toulotte C, Rashmi S (2022) Water stress resilient cereal crops: Lessons from wild relatives. J Integr Plant Biol 64:412–430. https://doi.org/10.1111/jipb.13222 [DOI: 10.1111/jipb.13222]
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4 [DOI: 10.1038/s41587-019-0201-4]
Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J, Polevikov E, Smith TPL, Pevzner PA (2020) metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 17:1103–1110. https://doi.org/10.1038/s41592-020-00971-x [DOI: 10.1038/s41592-020-00971-x]
Korf I (2004) Gene finding in novel genomes. BMC Bioinform 5:59. https://doi.org/10.1186/1471-2105-5-59 [DOI: 10.1186/1471-2105-5-59]
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12. https://doi.org/10.1186/gb-2004-5-2-r12 [DOI: 10.1186/gb-2004-5-2-r12]
Li H (2021) New strategies to improve minimap2 alignment accuracy. Bioinformatics 37:4572–4574. https://doi.org/10.1093/bioinformatics/btab705 [DOI: 10.1093/bioinformatics/btab705]
Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324 [DOI: 10.1093/bioinformatics/btp324]
Li L, Fumika K, Masahiro K (2004) Ethylene changes during development and ripening of fruit with reference to variety of Cucumis melo L. Breeding Sci 54:297–300.  https://doi.org/10.1270/jsbbs.54.297 [DOI: 10.1270/jsbbs.54.297]
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352 [DOI: 10.1093/bioinformatics/btp352]
Li Q, Zhao Y, Xiang X, Chen J, Rong J (2019) Genetic diversity of crop wild relatives under threat in yangtze river basin: call for enhanced In situ conservation and utilization. Mol Plant 12:1535–1538. https://doi.org/10.1016/j.molp.2019.09.011 [DOI: 10.1016/j.molp.2019.09.011]
Li H, Wang S, Chai S, Yang Z, Zhang Q, Xin H, Xu Y, Lin S, Chen X, Yao Z, Yang Q, Fei Z, Huang S, Zhang Z (2022) Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat Commun 13:682. https://doi.org/10.1038/s41467-022-28362-0 [DOI: 10.1038/s41467-022-28362-0]
Li G, Tang L, He Y, Xu Y, Bendahmane A, Garcia-Mas J, Lin T, Zhao G (2023a) The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon. Hortic Res 10:uhad182.  https://doi.org/10.1093/hr/uhad182 [DOI: 10.1093/hr/uhad182]
Li H, Yang X, Shang Y, Zhang Z, Huang S (2023b) Vegetable biology and breeding in the genomics era. Sci China Life Sci 66:226–250. https://doi.org/10.1007/s11427-022-2248-6 [DOI: 10.1007/s11427-022-2248-6]
Li N, He Q, Wang J, Wang B, Zhao J, Huang S, Yang T, Tang Y, Yang S, Aisimutuola P, Xu R, Hu J, Jia C, Ma K, Li Z, Jiang F, Gao J, Lan H, Zhou Y, Zhang X, Huang S, Fei Z, Wang H, Li H, Yu Q (2023c) Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat Genet 55:852–860. https://doi.org/10.1038/s41588-023-01340-y [DOI: 10.1038/s41588-023-01340-y]
Lian Q, Fu Q, Xu Y, Hu Z, Zheng J, Zhang A, He Y, Wang C, Xu C, Chen B, Garcia-Mas J, Zhao G, Wang H (2021) QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps. BMC Plant Biol 21:126. https://doi.org/10.1186/s12870-021-02904-y [DOI: 10.1186/s12870-021-02904-y]
Ling J, Xie X, Gu X, Zhao J, Ping X, Li Y, Yang Y, Mao Z, Xie B (2021) High-quality chromosome-level genomes of Cucumis metuliferus and Cucumis melo provide insight into Cucumis genome evolution. Plant J 107:136–148. https://doi.org/10.1111/tpj.15279 [DOI: 10.1111/tpj.15279]
Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F (2020a) Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnol J 18:2545–2558. https://doi.org/10.1111/pbi.13434 [DOI: 10.1111/pbi.13434]
Liu YC, Du HL, Li PC, Shen YT, Peng H, Liu SL, Zhou GA, Zhang HK, Liu Z, Shi M, Huang XH, Li Y, Zhang M, Wang Z, Zhu BG, Han B, Liang CZ, Tian ZX (2020b) Pan-genome of wild and cultivated soybeans. Cell 182:162. https://doi.org/10.1016/j.cell.2020.05.023 [DOI: 10.1016/j.cell.2020.05.023]
Lomsadze A, Burns PD, Borodovsky M (2014) Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res 42:e119–e119. https://doi.org/10.1093/nar/gku557 [DOI: 10.1093/nar/gku557]
Lu P, Yu S, Zhu N, Chen YR, Zhou B, Pan Y, Tzeng D, Fabi JP, Argyris J, Garcia-Mas J, Ye N, Zhang J, Grierson D, Xiang J, Fei Z, Giovannoni J, Zhong S (2018) Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat Plants 4:784–791. https://doi.org/10.1038/s41477-018-0249-z [DOI: 10.1038/s41477-018-0249-z]
Luo F, Li Q, Yu L, Wang C, Qi H (2020) High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant Physiol Bioch 154:770–781. https://doi.org/10.1016/j.plaphy.2020.05.033 [DOI: 10.1016/j.plaphy.2020.05.033]
Lyu X, Xia Y, Wang C, Zhang K, Deng G, Shen Q, Gao W, Zhang M, Liao N, Ling J, Bo Y, Hu Z, Yang J, Zhang M (2023) Pan-genome analysis sheds light on structural variation-based dissection of agronomic traits in melon crops. Plant Physiol 193:1330–1348. https://doi.org/10.1093/plphys/kiad405 [DOI: 10.1093/plphys/kiad405]
Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. https://doi.org/10.1093/bioinformatics/btr011 [DOI: 10.1093/bioinformatics/btr011]
Members C-N, Partners, (2023) Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Res 51:D18–D28. https://doi.org/10.1093/nar/gkac1073 [DOI: 10.1093/nar/gkac1073]
Mo C, Wang H, Wei M, Zeng Q, Zhang X, Fei Z, Zhang Y, Kong Q (2024) Complete genome assembly provides a high-quality skeleton for pan-NLRome construction in melon. Plant J n/a. https://doi.org/10.1111/tpj.16705 [DOI: 10.1111/tpj.16705]
Mosè M, Berkeley MR, Mathieu S, Simo FA, Zdobnov EM (2021) BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 38:4647–4654.  https://doi.org/10.1093/molbev/msab199 [DOI: 10.1093/molbev/msab199]
Oren E, Dafna A, Tzuri G, Halperin I, Isaacson T, Elkabetz M, Meir A, Saar U, Ohali S, La T, Romay C, Tadmor Y, Schaffer AA, Buckler ES, Cohen R, Burger J, Gur A (2022) Pan-genome and multi-parental framework for high-resolution trait dissection in melon (Cucumis melo). Plant J 112:1525–1542. https://doi.org/10.1111/tpj.16021 [DOI: 10.1111/tpj.16021]
Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T, Jiang N, Hirsch CN, Hufford MB (2019) Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol 20:275. https://doi.org/10.1186/s13059-019-1905-y [DOI: 10.1186/s13059-019-1905-y]
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y (2020) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1–21. https://doi.org/10.1007/s00122-019-03481-3 [DOI: 10.1007/s00122-019-03481-3]
Pichot C, Djari A, Tran J, Verdenaud M, Marande W, Huneau C, Gautier V, Latrasse D, Arribat S, Sommard V, Troadec C, Poncet C, Bendahmane M, Szecsi J, Dogimont C, Salse J, Benhamed M, Zouine M, Boualem A, Bendahmane A (2022) Cantaloupe melon genome reveals 3D chromatin features and structural relationship with the ancestral cucurbitaceae karyotype. iScience 25:103696. https://doi.org/10.1016/j.isci.2021.103696 [DOI: 10.1016/j.isci.2021.103696]
Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033 [DOI: 10.1093/bioinformatics/btq033]
Rhie A, Walenz BP, Koren S, Phillippy AM (2020) Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol 21:245. https://doi.org/10.1186/s13059-020-02134-9 [DOI: 10.1186/s13059-020-02134-9]
Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:R22. https://doi.org/10.1186/gb-2011-12-3-r22 [DOI: 10.1186/gb-2011-12-3-r22]
Solares EA, Chakraborty M, Miller DE, Kalsow S, Hall K, Perera AG, Emerson JJ, Hawley RS (2018) Rapid low-cost assembly of the drosophila melanogaster reference genome using low-coverage long-read sequencing. G3 Genes Genom Genet. 8:3143–3154. https://doi.org/10.1534/g3.118.200162 [DOI: 10.1534/g3.118.200162]
Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie WZ, Cheng Y, Zhang Y, Liu K, Yang QY, Chen LL, Guo L (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45. https://doi.org/10.1038/s41477-019-0577-7 [DOI: 10.1038/s41477-019-0577-7]
Stanke M, Tzvetkova A, Morgenstern B (2006) AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol 7(suppl 1):11.11-18. https://doi.org/10.1186/gb-2006-7-s1-s11 [DOI: 10.1186/gb-2006-7-s1-s11]
Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schnable PS, Lyons E, Lu J (2015) ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol 16:3. https://doi.org/10.1186/s13059-014-0573-1 [DOI: 10.1186/s13059-014-0573-1]
Tang D, Jia Y, Zhang J, Li H, Cheng L, Wang P, Bao Z, Liu Z, Feng S, Zhu X, Li D, Zhu G, Wang H, Zhou Y, Zhou Y, Bryan GJ, Buell CR, Zhang C, Huang S (2022) Genome evolution and diversity of wild and cultivated potatoes. Nature 606:535–541.  https://doi.org/10.1038/s41586-022-04822-x [DOI: 10.1038/s41586-022-04822-x]
Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A, Sa’Ar U, Baumkoler F, Mazourek M, Lewinsohn E, Fei Z, Schaffer AA, Li L, Burger J, Katzir N, Tadmor Y (2015) A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J 82:267–279. https://doi.org/10.1111/tpj.12814 [DOI: 10.1111/tpj.12814]
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963. https://doi.org/10.1371/journal.pone.0112963 [DOI: 10.1371/journal.pone.0112963]
Wang J, Zhang Z (2021) GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinf 19:629–640. https://doi.org/10.1016/j.gpb.2021.08.005 [DOI: 10.1016/j.gpb.2021.08.005]
Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131-151. https://doi.org/10.1105/tpc.001768 [DOI: 10.1105/tpc.001768]
Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani PS, Saha S, Zhang J, Mainiero S, Strickler SR, Catala C, Martin GB, Mueller LA, Vrebalov J, Giovannoni JJ, Wu S, Fei Z (2020) Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat Commun 11:5817. https://doi.org/10.1038/s41467-020-19682-0 [DOI: 10.1038/s41467-020-19682-0]
Wei M, Huang Y, Mo C, Wang H, Zeng Q, Yang W, Chen J, Zhang X, Kong Q (2023) Telomere-to-telomere genome assembly of melon (Cucumis melo L. var. inodorus) provides a high-quality reference for meta-QTL analysis of important traits. Hort Res 10:uhad189. https://doi.org/10.1093/hr/uhad189 [DOI: 10.1093/hr/uhad189]
Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang ZH, Huang S, Yang X (2019) Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 31:1063–1076. https://doi.org/10.1105/tpc.18.00957 [DOI: 10.1105/tpc.18.00957]
Xu Y, Zhang H, Zhong Y, Jiang N, Zhong X, Zhang Q, Chai S, Li H, Zhang Z (2022) Comparative genomics analysis of bHLH genes in cucurbits identifies a novel gene regulating cucurbitacin biosynthesis. Hortic Res 9:uhac038. https://doi.org/10.1093/hr/uhac038 [DOI: 10.1093/hr/uhac038]
Yang X, Hua D, Jinyu FU, Zhang Q, Xie M, Liu L (2018) Development and application of a molecular marker for melon flesh color. Acta Botan Boreali-Occiden Sin 38:654–660
Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L, Wang Y, Xu P, Peng Y, Shi Z, Lan L, Ma Z, Yang X, Zhang Q, Bai M, Li S, Li W, Liu L, Jackson D, Yan J (2019) Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 51:1052–1059. https://doi.org/10.1038/s41588-019-0427-6 [DOI: 10.1038/s41588-019-0427-6]
Yang J, Deng G, Lian J, Garraway J, Niu Y, Hu Z, Yu J, Zhang M (2020) The chromosome-scale genome of melon dissects genetic architecture of important agronomic traits. iScience 23:101422. https://doi.org/10.1016/j.isci.2020.101422 [DOI: 10.1016/j.isci.2020.101422]
Yano R, Ariizumi T, Nonaka S, Kawazu Y, Zhong S, Mueller L, Giovannoni JJ, Rose JKC, Ezura H (2020) Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression. Commun Biol 3:432. https://doi.org/10.1038/s42003-020-01172-0 [DOI: 10.1038/s42003-020-01172-0]
Zhang H, Wei C, Yang X, Chen H, Yang Y, Mo Y, Li H, Zhang Y, Ma J, Yang J, Zhang X (2017) Genome-wide identification and expression analysis of calcium-dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.). PLoS ONE 12:e0176352. https://doi.org/10.1371/journal.pone.0176352 [DOI: 10.1371/journal.pone.0176352]
Zhang H, Li X, Yu H, Zhang Y, Li M, Wang H, Wang D, Wang H, Fu Q, Liu M, Ji C, Ma L, Tang J, Li S, Miao J, Zheng H, Yi H (2019) A high-quality melon genome assembly provides insights into genetic basis of fruit trait improvement. iScience 22:16–27. https://doi.org/10.1016/j.isci.2019.10.049 [DOI: 10.1016/j.isci.2019.10.049]
Zhao G, Lian Q, Zhang Z, Fu Q, He Y, Ma S, Ruggieri V, Monforte AJ, Wang P, Julca I, Wang H, Liu J, Xu Y, Wang R, Ji J, Xu Z, Kong W, Zhong Y, Shang J, Pereira L, Argyris J, Zhang J, Mayobre C, Pujol M, Oren E, Ou D, Wang J, Sun D, Zhao S, Zhu Y, Li N, Katzir N, Gur A, Dogimont C, Schaefer H, Fan W, Bendahmane A, Fei Z, Pitrat M, Gabaldon T, Lin T, Garcia-Mas J, Xu Y, Huang S (2019) A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat Genet 51:1607–1615. https://doi.org/10.1038/s41588-019-0522-8 [DOI: 10.1038/s41588-019-0522-8]
Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, Zan Y, Wu Y, Cheng L, Fang Y, Wu K, Zhang J, Lyu H, Lin T, Gao Q, Saha S, Mueller L, Fei Z, Städler T, Xu S, Zhang Z, Speed D, Huang S (2022) Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606:527–534. https://doi.org/10.1038/s41586-022-04808-9 [DOI: 10.1038/s41586-022-04808-9]

Grants

  1. 32225044/National Natural Science Foundation of China
  2. 32130093/National Natural Science Foundation of China
  3. No.ts20190947/Taishan Scholar Foundation of Shandong Province

MeSH Term

Cucurbitaceae
Fruit
Domestication
Genome, Plant
Phenotype
Genotype
Quantitative Trait Loci
Genomic Structural Variation
Genes, Plant

Links to CNCB-NGDC Resources

Word Cloud

Similar Articles

Cited By