Introduction

To interpret genetic variants discovered from next-generation sequencing, integration of heterogeneous information is vital for success. This article describes a framework named PERCH (Polymorphism Evaluation, Ranking, and Classification for a Heritable trait), available at http://BJFengLab.org/. It can prioritize disease genes by quantitatively unifying a new deleteriousness measure called BayesDel, an improved assessment of the biological relevance of genes to the disease, a modified linkage analysis, a novel rare-variant association test, and a converted variant call quality score. It supports data that contain various combinations of extended pedigrees, trios, and case-controls, and allows for a reduced penetrance, an elevated phenocopy rate, liability classes, and covariates. BayesDel is more accurate than PolyPhen2, SIFT, FATHMM, LRT, Mutation Taster, Mutation Assessor, PhyloP, GERP++, SiPhy, CADD, MetaLR, and MetaSVM. The overall approach is faster and more powerful than the existing quantitative method pVAAST, as shown by the simulations of challenging situations in finding the missing heritability of a complex disease. This framework can also classify variants of unknown significance (variants of uncertain significance) by quantitatively integrating allele frequencies, deleteriousness, association, and co-segregation. PERCH is a versatile tool for gene prioritization in gene discovery research and variant classification in clinical genetic testing.

Publications

  1. PERCH: A Unified Framework for Disease Gene Prioritization.
    Cite this
    Feng BJ, 2017-03-01 - Human mutation

Credits

  1. Bing-Jian Feng
    Investigator

    Huntsman Cancer Institute, University of Utah, United States of America

Community Ratings

UsabilityEfficiencyReliabilityRated By
0 user
Sign in to rate
Summary
AccessionBT006586
Tool TypeApplication
Category
PlatformsLinux/Unix
TechnologiesC++
User InterfaceTerminal Command Line
Download Count0
Country/RegionUnited States of America
Submitted ByBing-Jian Feng