Objectives: With the availability of COVID-19 vaccines, public health focus is shifting to post-vaccination surveillance to identify breakthrough infections in vaccinated populations. Therefore, the objectives of these reviews are to identify scientific evidence and international guidance on surveillance and testing approaches to monitor the presence of the virus in a vaccinated population. Method: We searched Ovid MEDLINE, including Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Embase, EBM Reviews - Cochrane Central Register of Controlled Trials, and EBM Reviews - Cochrane Database of Systematic Reviews. We also searched the Web of Science Core Collection. A grey literature search was also conducted. This search was limited to studies conducted since December 2020 and current to June 13th, 2021. There were no language limitations. COVID-19 surveillance studies that were published after December 2020 but did not specify whether they tested a vaccinated population were also considered for inclusion. For the international guidance review, a grey literature search was conducted, including a thorough search of Google, websites of international government organizations (e.g., Center for Disease Control and Prevention [CDC], World Health Organization [WHO]), and McMaster Health Forum (CoVID-END). This search was primarily examining surveillance guidance published since December 2020 (to capture guidance specific to vaccinations) and any relevant pre-December 2020 guidance. Results: Thirty-three studies were included for data synthesis of scientific evidence on surveillance of COVID-19. All the studies were published between April and June 2021. Twenty-one studies were from peer-reviewed journals. Five approaches to monitoring post-vaccination COVID-19 cases and emerging variants of concern were identified, including screening with reverse transcriptase polymerase chain reaction (RT-PCR) and/or a rapid antigen test, genomic surveillance, wastewater surveillance, metagenomics, and testing of air filters on public buses. For population surveillance, the following considerations and limitations were observed: variability in person-to-person testing frequency; lower sensitivity of antigen tests; timing of infections relative to PCR testing can result in missed infections; large studies may fail to identify local variations; and loss of interest in testing by participants in long follow-up studies. Through comprehensive grey literature searching, 68 international guidance documents were captured for full-text review. A total of 26 documents met the inclusion criteria and were included in our synthesis. Seven overarching surveillance methods emerged in the literature. PCR-testing was the most recommended surveillance method, followed by genomic screening, serosurveillance, wastewater surveillance, antigen testing, health record screening, and syndromic surveillance. Conclusion: Evidence for post-vaccination COVID-19 surveillance was derived from studies in partially or fully vaccinated populations. Population PCR screening, supplemented by rapid antigen tests, was the most frequently used surveillance method and also the most commonly recommended across jurisdictions. Most recent guidance on COVID-19 surveillance is not specific to vaccinated individuals, or it is in effect but has not yet been updated to reflect that. Therefore, more evidence-informed guidance on testing and surveillance approaches in a vaccinated population that incorporates all testing modalities is required.