Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells.

Beth Stevens, Tomoko Ishibashi, Jiang-Fan Chen, R Douglas Fields
Author Information
  1. Beth Stevens: Section on Nervous System Development & Plasticity, NICHD, National Institutes of Health, Bethesda, MD, USA.

Abstract

Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron-glia communication are not known. Recent research shows that Adenosine is a neuron-glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility that Adenosine might have a similar function in communicating between axons and premyelinating SCs. Using a combination of pharmacological and molecular approaches, we found that mouse SCs in culture express functional Adenosine receptors and ATP receptors, a far more complex array of purinergic receptors than thought previously. Adenosine, but not ATP, activates ERK/MAPK through stimulation of cAMP-linked A2(A) Adenosine receptors. Both ATP and Adenosine inhibit proliferation of SCs induced by platelet-derived growth factor (PDGF), via mechanisms that are partly independent. In contrast to ATP, Adenosine failed to inhibit the differentiation of SCs to the O4+ stage. This indicates that, in addition to ATP, Adenosine is an activity-dependent signaling molecule between axons and premyelinating Schwann cells, but that electrical activity, acting through Adenosine, has opposite effects on the differentiation of myelinating glia in the PNS and CNS.

References

  1. Mol Pharmacol. 1993 Feb;43(2):277-80 [PMID: 8429829]
  2. Naunyn Schmiedebergs Arch Pharmacol. 2002 Oct;366(4):287-98 [PMID: 12237741]
  3. J Neurosci Res. 2001 Mar 15;63(6):516-24 [PMID: 11241587]
  4. J Neurosci. 1999 Nov 1;19(21):9192-200 [PMID: 10531422]
  5. Neuron. 2002 Dec 5;36(5):855-68 [PMID: 12467589]
  6. J Neurosci. 1999 Jun 1;19(11):4211-20 [PMID: 10341225]
  7. Glia. 1998 Aug;23(4):374-82 [PMID: 9671967]
  8. J Biol Chem. 2001 Jun 1;276(22):19102-10 [PMID: 11262401]
  9. Naunyn Schmiedebergs Arch Pharmacol. 2000 Nov;362(4-5):382-91 [PMID: 11111832]
  10. J Neurosci. 1995 Nov;15(11):7121-31 [PMID: 7472466]
  11. Neurosci Lett. 1997 Mar 7;224(1):49-52 [PMID: 9132688]
  12. Glia. 2001 Apr 1;34(1):39-51 [PMID: 11284018]
  13. Neurochem Int. 1998 May-Jun;32(5-6):421-5 [PMID: 9676740]
  14. Science. 2002 Aug 9;297(5583):1018-23 [PMID: 12169734]
  15. Glia. 1999 Dec;28(3):190-200 [PMID: 10559778]
  16. J Neurosci. 1990 Sep;10(9):2950-64 [PMID: 2398369]
  17. Trends Neurosci. 2000 Dec;23(12):625-33 [PMID: 11137153]
  18. Cell Signal. 2003 Sep;15(9):813-27 [PMID: 12834807]
  19. J Neurosci. 2001 Feb 15;21(4):1110-6 [PMID: 11160381]
  20. Science. 2002 Oct 18;298(5593):556-62 [PMID: 12386325]
  21. J Neurochem. 1994 Aug;63(2):552-60 [PMID: 8035179]
  22. Neurosci Lett. 1998 Feb 20;242(3):159-62 [PMID: 9530930]
  23. Pharmacol Rev. 1998 Sep;50(3):413-92 [PMID: 9755289]
  24. Mol Cell Biol. 1997 Feb;17(2):862-72 [PMID: 9001241]
  25. Br J Pharmacol. 2001 Nov;134(6):1180-9 [PMID: 11704637]
  26. J Neurosci Res. 1997 Jul 15;49(2):236-47 [PMID: 9272646]
  27. Neurosci Res. 1992 Feb;13(1):1-17 [PMID: 1314349]
  28. Neuroscience. 1996 Oct;74(4):1187-96 [PMID: 8895885]
  29. Mol Pharmacol. 2000 Sep;58(3):477-82 [PMID: 10953039]
  30. J Neurosci. 2000 Jun 15;20(12):4635-45 [PMID: 10844033]
  31. J Neurosci. 1997 Oct 1;17(19):7252-66 [PMID: 9295372]
  32. Novartis Found Symp. 2001;239:4-13; discussion 13-5, 45-51 [PMID: 11529315]
  33. J Biol Chem. 1999 Sep 3;274(36):25833-41 [PMID: 10464324]
  34. Int Rev Neurobiol. 1992;34:133-214 [PMID: 1587715]
  35. Naunyn Schmiedebergs Arch Pharmacol. 2000 Nov;362(4-5):299-309 [PMID: 11111825]
  36. J Neurosci. 1999 Jan 15;19(2):520-8 [PMID: 9880572]
  37. Naunyn Schmiedebergs Arch Pharmacol. 2000 Nov;362(4-5):364-74 [PMID: 11111830]
  38. Brain Res. 1998 Jul 6;798(1-2):294-303 [PMID: 9666151]
  39. Neuroscience. 1994 Mar;59(1):67-76 [PMID: 8190273]
  40. J Neurochem. 2001 May;77(4):1001-9 [PMID: 11359865]
  41. Nature. 1987 Apr 9-15;326(6113):603-5 [PMID: 3561499]
  42. J Neurosci. 1998 Nov 15;18(22):9303-11 [PMID: 9801369]
  43. Acta Neuropathol. 1994;87(1):8-13 [PMID: 8140897]
  44. J Clin Invest. 1995 Oct;96(4):1979-86 [PMID: 7560091]
  45. Science. 2000 Mar 24;287(5461):2267-71 [PMID: 10731149]
  46. J Neurophysiol. 1996 Oct;76(4):2595-607 [PMID: 8899630]
  47. J Auton Pharmacol. 1996 Dec;16(6):397-400 [PMID: 9131425]
  48. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):448-52 [PMID: 9012803]
  49. J Cell Biol. 1991 Feb;112(3):457-67 [PMID: 1704008]

Grants

  1. Z01 HD000713-11/Intramural NIH HHS

Word Cloud

Created with Highcharts 10.0.0adenosineATPaxonsSCsreceptorsSchwannproliferationpremyelinatingSCstagepurinergicsignalingmyelinatinggliaCNSinhibitdifferentiationactivity-dependentcellsNonsynapticreleaseelectricallystimulateddorsalrootgangionDRGinhibitscellarrestsdevelopmentspecifictypesreceptorsintracellularpathwaysinvolvedformneuron-gliacommunicationknownRecentresearchshowsneuron-glialtransmitterpresentstudyinvestigatespossibilitymightsimilarfunctioncommunicatingUsingcombinationpharmacologicalmolecularapproachesfoundmousecultureexpressfunctionalfarcomplexarraythoughtpreviouslyAdenosineactivatesERK/MAPKstimulationcAMP-linkedA2inducedplatelet-derivedgrowthfactorPDGFviamechanismspartlyindependentcontrastfailedO4+indicatesadditionmoleculeelectricalactivityactingoppositeeffectsPNSAdenosine:axonalsignalregulatingMAPkinasedeveloping

Similar Articles

Cited By