Interactions of Sox10 and Egr2 in myelin gene regulation.

Erin A Jones, Sung-Wook Jang, Gennifer M Mager, Li-Wei Chang, Rajini Srinivasan, Nolan G Gokey, Rebecca M Ward, Rakesh Nagarajan, John Svaren
Author Information
  1. Erin A Jones: Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA. jpsvaren@wisc.edu

Abstract

Myelination in the PNS is accompanied by a large induction of the myelin protein zero (Mpz) gene to produce the most abundant component in peripheral myelin. Analyses of knockout mice have shown that the EGR2/Krox20 and Sox10 transcription factors are required for Mpz expression. Our recent work has shown that the dominant EGR2 mutations associated with human peripheral neuropathies cause disruption of EGR2/Sox10 synergy at specific sites, including a conserved enhancer element in the first intron of the Mpz gene. Further investigation of EGR2/Sox10 interactions reveals that activation of the Mpz intron element by EGR2 requires both Sox10-binding sites. In addition, both Egr1 and Egr3 cooperate with Sox10 to activate this element, which indicates that this capacity is conserved among Egr family members. Finally, a conserved composite structure of EGR2/Sox10-binding sites in the genes encoding Mpz, myelin-associated glycoprotein and myelin basic protein genes was used to screen for similar modules in other myelin genes, revealing a potential regulatory element in the periaxin gene. Overall, these results elucidate a working model for developmental regulation of Mpz expression, several facets of which extend to regulation of other peripheral myelin genes.

References

  1. Neurobiol Dis. 2001 Aug;8(4):700-6 [PMID: 11493034]
  2. Nat Genet. 2004 Apr;36(4):361-9 [PMID: 15004559]
  3. Mol Cell Neurosci. 1997;8(5):336-50 [PMID: 9073396]
  4. Mol Cell Neurosci. 2007 Dec;36(4):501-14 [PMID: 17916431]
  5. Cell. 1992 Nov 13;71(4):565-76 [PMID: 1384988]
  6. Nucleic Acids Res. 2000 Aug 15;28(16):3047-55 [PMID: 10931919]
  7. Mol Cell Neurosci. 2003 May;23(1):13-27 [PMID: 12799134]
  8. J Neurosci Res. 1995 Feb 1;40(2):241-50 [PMID: 7745617]
  9. Development. 2006 Aug;133(15):2875-86 [PMID: 16790476]
  10. J Neurosci Res. 2002 Aug 15;69(4):497-508 [PMID: 12210843]
  11. J Neurosci Res. 1997 Dec 1;50(5):702-12 [PMID: 9418958]
  12. Neuron. 2001 May;30(2):355-68 [PMID: 11394999]
  13. Neuron. 1991 Nov;7(5):831-44 [PMID: 1720625]
  14. Nucleic Acids Res. 1982 May 11;10(9):2997-3011 [PMID: 7048259]
  15. Development. 1999 Apr;126(7):1397-406 [PMID: 10068633]
  16. Eur J Neurosci. 1999 May;11(5):1577-86 [PMID: 10215910]
  17. Hum Mol Genet. 2001 Nov 15;10(24):2783-95 [PMID: 11734543]
  18. Nat Genet. 1998 Apr;18(4):382-4 [PMID: 9537424]
  19. J Neurosci. 1988 Sep;8(9):3515-21 [PMID: 3171688]
  20. Nucleic Acids Res. 2006 Mar 31;34(6):1735-44 [PMID: 16582099]
  21. Mol Cell Biol. 2007 May;27(9):3521-9 [PMID: 17325040]
  22. J Neurosci. 2005 Nov 30;25(48):11210-7 [PMID: 16319321]
  23. Development. 2003 Mar;130(5):941-53 [PMID: 12538520]
  24. Biotechniques. 1998 Jun;24(6):954-8, 960, 962 [PMID: 9631186]
  25. Cell. 1985 Mar;40(3):501-8 [PMID: 2578885]
  26. Exp Neurol. 2006 Apr;198(2):438-49 [PMID: 16442526]
  27. Genome Res. 2004 Apr;14(4):708-15 [PMID: 15060014]
  28. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2596-601 [PMID: 15695336]
  29. J Neurochem. 2006 Sep;98(5):1678-87 [PMID: 16923174]
  30. Mol Cell Biol. 2000 May;20(9):3198-209 [PMID: 10757804]
  31. J Biol Chem. 2002 Apr 26;277(17):15132-41 [PMID: 11830592]
  32. Neurology. 2000 Apr 25;54(8):1696-8 [PMID: 10762521]
  33. J Neurochem. 1973 Apr;20(4):1207-16 [PMID: 4697881]
  34. Neuromuscul Disord. 2005 Nov;15(11):764-7 [PMID: 16198564]
  35. Nature. 1994 Oct 27;371(6500):796-9 [PMID: 7935840]
  36. J Neurosci. 1998 Jan 1;18(1):237-50 [PMID: 9412504]
  37. Hum Mutat. 1999 Oct;14(4):353-4 [PMID: 10502832]
  38. Hum Mol Genet. 1999 Jul;8(7):1245-51 [PMID: 10369870]
  39. Development. 1988 Mar;102(3):499-504 [PMID: 2846259]
  40. Neuron. 1994 Mar;12(3):497-508 [PMID: 8155317]
  41. Neurobiol Dis. 2006 Oct;24(1):159-69 [PMID: 16872830]
  42. Neurobiol Dis. 2003 Feb;12(1):89-95 [PMID: 12609493]
  43. Mol Cell Biol. 1995 Apr;15(4):2275-87 [PMID: 7891721]
  44. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  45. J Neurochem. 2005 May;93(3):737-48 [PMID: 15836632]
  46. Mol Cell Neurosci. 1996 Aug;8(2/3):129-45 [PMID: 8954628]
  47. J Biol Chem. 2003 Mar 14;278(11):8960-8 [PMID: 12643284]
  48. J Biol Chem. 2006 Mar 3;281(9):5453-60 [PMID: 16373334]
  49. Neurology. 1999 Jun 10;52(9):1827-32 [PMID: 10371530]
  50. Development. 2007 Sep;134(18):3271-81 [PMID: 17699610]

Grants

  1. P30 HD003352/NICHD NIH HHS
  2. R01 HD041590/NICHD NIH HHS
  3. R01 HD041590-07/NICHD NIH HHS
  4. T32 GM008688/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0myelinMpzgeneelementgenesperipheralsitesconservedregulationproteinshownexpressionintronEgr2Sox10MyelinationPNSaccompaniedlargeinductionzeroproduceabundantcomponentAnalysesknockoutmiceEGR2/Krox20SOX10transcriptionfactorsrequiredrecentworkdominantEGR2mutationsassociatedhumanneuropathiescausedisruptionEGR2/SOX10synergyspecificincludingenhancerfirstinvestigationEgr2/Sox10interactionsrevealsactivationrequiresSox10-bindingadditionEgr1Egr3cooperateactivateindicatescapacityamongEgrfamilymembersFinallycompositestructureEgr2/Sox10-bindingencodingmyelin-associatedglycoproteinbasicusedscreensimilarmodulesrevealingpotentialregulatoryperiaxinOverallresultselucidateworkingmodeldevelopmentalseveralfacetsextendInteractions

Similar Articles

Cited By (45)