Correlation between Ka/Ks and Ks is related to substitution model and evolutionary lineage.

Jun Li, Zhang Zhang, Søren Vang, Jun Yu, Gane Ka-Shu Wong, Jun Wang
Author Information
  1. Jun Li: Beijing Genomics Institute, Shenzhen, Building Complex, BeiShan Industrial Zone, Yantian District, Shenzhen, 518083, China. junli@genomics.org.cn

Abstract

In 2005, Wyckoff and coworkers described a surprisingly strong correlation between Ka/Ks and Ks in several data sets using the LPB93 algorithm. This finding indicated the possibility of a paradigm shift in the way selection strength can be measured using the Ka/Ks ratio. We carried out a calculation of Ka and Ks using six different algorithms on three cross-species orthologous data sets and found a highly variable correlation among the algorithms and lineages. Algorithms based on the GY-HKY substitution model exhibit a weaker positive correlation or a stronger negative correlation than those based on the K2P and JC69 substitution model. Even if one algorithm shows a positive correlation between Ka/Ks and Ks in a warm-blooded lineage, it may show no correlation in a cold-blooded lineage. This algorithm-related and evolutionary lineage-related correlation indicates the need for great caution in drawing conclusions when using only one Ka and Ks algorithm in a genomewide analysis of selection strength. Our results indicated that currently used algorithms for Ka and Ks calculations are flawed and need improvements.

References

  1. Mol Biol Evol. 1994 Sep;11(5):725-36 [PMID: 7968486]
  2. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  3. Mol Biol Evol. 2006 Mar;23(3):530-40 [PMID: 16280543]
  4. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  5. Nat Rev Genet. 2006 Feb;7(2):98-108 [PMID: 16418745]
  6. Mol Biol Evol. 1985 Mar;2(2):150-74 [PMID: 3916709]
  7. Syst Biol. 2001 Aug;50(4):580-601 [PMID: 12116655]
  8. Mol Biol Evol. 2004 Dec;21(12):2290-8 [PMID: 15329386]
  9. Genomics Proteomics Bioinformatics. 2006 Aug;4(3):173-81 [PMID: 17127215]
  10. Trends Genet. 2005 Jul;21(7):381-5 [PMID: 15946765]
  11. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  12. Mol Biol Evol. 2000 Jan;17(1):32-43 [PMID: 10666704]
  13. Mol Biol Evol. 1996 Jan;13(1):105-14 [PMID: 8583885]
  14. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  15. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  16. J Mol Evol. 1993 Jan;36(1):96-9 [PMID: 8433381]
  17. J Mol Evol. 1995 Jan;40(1):56-63 [PMID: 7714912]
  18. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 [PMID: 17531802]
  19. Mol Biol Evol. 1986 Sep;3(5):418-26 [PMID: 3444411]
  20. Curr Opin Genet Dev. 2001 Dec;11(6):642-6 [PMID: 11682307]
  21. J Mol Evol. 1995 Feb;40(2):190-226 [PMID: 7699723]
  22. BMC Evol Biol. 2007 Sep 21;7:168 [PMID: 17883872]
  23. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  24. Genome Res. 2003 Oct;13(10):2213-9 [PMID: 14525923]
  25. Trends Ecol Evol. 2000 Dec 1;15(12):496-503 [PMID: 11114436]
  26. Mol Biol Evol. 1993 Jan;10(1):186-204 [PMID: 8450755]
  27. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708-13 [PMID: 9520431]
  28. BMC Evol Biol. 2006 Jun 02;6:44 [PMID: 16740169]

MeSH Term

Algorithms
Animals
Computer Simulation
DNA Mutational Analysis
Data Interpretation, Statistical
Evolution, Molecular
Humans
Mice
Models, Genetic
Polymorphism, Genetic
Rats
Sequence Alignment
Sequence Analysis, DNA

Word Cloud

Similar Articles

Cited By