The genome of Theobroma cacao.

Xavier Argout, Jerome Salse, Jean-Marc Aury, Mark J Guiltinan, Gaetan Droc, Jerome Gouzy, Mathilde Allegre, Cristian Chaparro, Thierry Legavre, Siela N Maximova, Michael Abrouk, Florent Murat, Olivier Fouet, Julie Poulain, Manuel Ruiz, Yolande Roguet, Maguy Rodier-Goud, Jose Fernandes Barbosa-Neto, Francois Sabot, Dave Kudrna, Jetty Siva S Ammiraju, Stephan C Schuster, John E Carlson, Erika Sallet, Thomas Schiex, Anne Dievart, Melissa Kramer, Laura Gelley, Zi Shi, Aurélie Bérard, Christopher Viot, Michel Boccara, Ange Marie Risterucci, Valentin Guignon, Xavier Sabau, Michael J Axtell, Zhaorong Ma, Yufan Zhang, Spencer Brown, Mickael Bourge, Wolfgang Golser, Xiang Song, Didier Clement, Ronan Rivallan, Mathias Tahi, Joseph Moroh Akaza, Bertrand Pitollat, Karina Gramacho, Angélique D'Hont, Dominique Brunel, Diogenes Infante, Ismael Kebe, Pierre Costet, Rod Wing, W Richard McCombie, Emmanuel Guiderdoni, Francis Quetier, Olivier Panaud, Patrick Wincker, Stephanie Bocs, Claire Lanaud
Author Information
  1. Xavier Argout: Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)-Biological Systems Department-Unité Mixte de Recherche Développement et Amélioration des Plantes (UMR DAP) TA A 96/03-34398, Montpellier, France. xavier.argout@cirad.fr

Abstract

We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.

References

  1. Nature. 2000 Dec 14;408(6814):796-815 [PMID: 11130711]
  2. Mol Gen Genet. 1996 Mar 7;250(4):405-13 [PMID: 8602157]
  3. Heredity (Edinb). 2003 Sep;91(3):322-30 [PMID: 12939635]
  4. Nature. 2009 Jan 29;457(7229):551-6 [PMID: 19189423]
  5. Mol Plant Microbe Interact. 2008 May;21(5):507-17 [PMID: 18393610]
  6. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13 [PMID: 19706486]
  7. Nat Immunol. 2006 Dec;7(12):1243-9 [PMID: 17110940]
  8. Genome Res. 2010 Nov;20(11):1545-57 [PMID: 20876790]
  9. Nature. 2008 Apr 24;452(7190):991-6 [PMID: 18432245]
  10. Plant Physiol. 2003 Jun;132(2):681-97 [PMID: 12805597]
  11. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  12. BMC Genomics. 2008 Dec 16;9:603 [PMID: 19087275]
  13. J Agric Food Chem. 2007 May 16;55(10):3926-35 [PMID: 17439235]
  14. Genes Nutr. 2009 Dec;4(4):243-50 [PMID: 19685255]
  15. Plant Physiol. 2009 May;150(1):12-26 [PMID: 19321712]
  16. Mol Biol Evol. 1994 Sep;11(5):725-36 [PMID: 7968486]
  17. Nature. 2007 Sep 27;449(7161):463-7 [PMID: 17721507]
  18. Cell. 2009 Feb 20;136(4):669-87 [PMID: 19239888]
  19. J Appl Genet. 2002;43(4):403-14 [PMID: 12441626]
  20. Planta. 1991 May;184(2):279-84 [PMID: 24194081]
  21. Science. 2009 Nov 20;326(5956):1112-5 [PMID: 19965430]
  22. PLoS Genet. 2009 Nov;5(11):e1000743 [PMID: 19956743]
  23. Int J Mol Sci. 2009 Nov 20;10(10):4290-309 [PMID: 20057946]
  24. Nature. 2010 Jan 14;463(7278):178-83 [PMID: 20075913]
  25. BMC Res Notes. 2009 Sep 28;2:197 [PMID: 19785756]
  26. BMC Plant Biol. 2010 Nov 15;10:248 [PMID: 21078185]
  27. Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8 [PMID: 17991681]
  28. J Mol Evol. 2000 Mar;50(3):203-13 [PMID: 10754062]
  29. Planta. 2006 Sep;224(4):740-9 [PMID: 16362326]
  30. Cell. 2009 May 29;137(5):804-6 [PMID: 19490889]
  31. Bioinformatics. 2005 Apr 15;21(8):1332-8 [PMID: 15564294]
  32. Heredity (Edinb). 2002 Nov;89(5):380-6 [PMID: 12399997]
  33. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  34. Trends Plant Sci. 2007 Jan;12(1):29-36 [PMID: 17161643]
  35. BMC Genomics. 2008 Oct 30;9:512 [PMID: 18973681]
  36. Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18937-40 [PMID: 18024588]
  37. Brief Bioinform. 2009 Nov;10(6):619-30 [PMID: 19720678]
  38. Biol Cell. 1993;78(1-2):41-51 [PMID: 8220226]
  39. Genome Res. 2006 Jan;16(1):140-7 [PMID: 16344555]
  40. Development. 2004 Jan;131(2):251-61 [PMID: 14701679]
  41. Trends Plant Sci. 2010 Sep;15(9):479-87 [PMID: 20638891]
  42. Science. 2008 Apr 25;320(5875):486-8 [PMID: 18436778]
  43. Nature. 2005 Aug 11;436(7052):793-800 [PMID: 16100779]
  44. Theor Appl Genet. 2004 Apr;108(6):1151-61 [PMID: 14760486]

MeSH Term

Cacao
Cell Nucleus
DNA
DNA Transposable Elements
Evolution, Molecular
Gene Expression Regulation, Plant
Genes, Plant
Genome, Plant
Genotype
Homozygote
In Situ Hybridization
Models, Genetic
Quantitative Trait Loci

Chemicals

DNA Transposable Elements
DNA