Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease.

Laura Beekman, Triin Tohver, Rkia Dardari, Renaud Léguillette
Author Information
  1. Laura Beekman: Departement of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.

Abstract

BACKGROUND: The stability of reference genes has a tremendous effect on the results of relative quantification of genes expression by quantitative polymerase chain reaction. Equine Inflammatory Airway Disease (IAD) is a common condition often treated with corticosteroids. The diagnosis of IAD is based on clinical signs and bronchoalveolar lavage (BAL) fluid cytology. The aim of this study was to identify reference genes with the most stable mRNA expression in the BAL cells of horses with IAD irrespective of corticosteroids treatment.
RESULTS: The expression stability of seven candidate reference genes (B2M, HPRT, GAPDH, ACTB, UBB, RPL32, SDHA) was determined by qRT-PCR in BAL samples taken pre- and post- treatment with dexamethasone and fluticasone propionate for two weeks in 7 horses with IAD. Primers' efficiencies were calculated using LinRegPCR. NormFinder, GeNorm and qBasePlus softwares were used to rank the genes according to their stability. GeNorm was also used to determine both the ideal number and the best combination of reference genes. GAPDH was found to be the most stably expressed gene with the three softwares. GeNorm ranked B2M as the least stable gene. Based on the pair-wise variation cut-off value determined with GeNorm, the number of genes required for optimal normalization was four and included GAPDH, SDHA, HPRT and RPL32.
CONCLUSION: The geometric mean of GAPDH, HPRT, SDHA and RPL32 is recommended for accurate normalization of quantitative PCR data in BAL cells of horses with IAD treated with corticosteroids. If only one reference gene can be used, then GAPDH is recommended.

References

  1. BMC Mol Biol. 2008 May 19;9:49 [PMID: 18489742]
  2. Eur Respir J. 2005 Dec;26(6):1002-8 [PMID: 16319328]
  3. Vet Immunol Immunopathol. 2009 Jul 15;130(1-2):114-9 [PMID: 19269038]
  4. Biochem Biophys Res Commun. 2008 Sep 12;374(1):106-10 [PMID: 18602371]
  5. Am J Vet Res. 2009 Mar;70(3):365-72 [PMID: 19254149]
  6. BMC Mol Biol. 2007 Jun 08;8:47 [PMID: 17559644]
  7. Expert Rev Mol Diagn. 2005 Mar;5(2):209-19 [PMID: 15833050]
  8. J Vet Intern Med. 2007 Mar-Apr;21(2):356-61 [PMID: 17427403]
  9. J Vet Intern Med. 2010 Jan-Feb;24(1):57-64 [PMID: 20002546]
  10. BMC Cancer. 2009 Feb 06;9:49 [PMID: 19200351]
  11. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  12. Physiol Genomics. 2005 May 11;21(3):389-95 [PMID: 15769908]
  13. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  14. Anal Biochem. 2005 Sep 1;344(1):141-3 [PMID: 16054107]
  15. Vet Immunol Immunopathol. 2008 Dec 15;126(3-4):230-5 [PMID: 18829118]
  16. BMC Mol Biol. 2008 Jul 31;9:69 [PMID: 18671841]
  17. BMC Genomics. 2007 Jul 18;8:243 [PMID: 17640361]
  18. J Vet Intern Med. 2006 Jan-Feb;20(1):167-74 [PMID: 16496937]
  19. BMC Biotechnol. 2006 Apr 27;6:24 [PMID: 16643647]
  20. J Vet Intern Med. 2008 Mar-Apr;22(2):427-35 [PMID: 18346142]
  21. BMC Musculoskelet Disord. 2009 Feb 26;10:27 [PMID: 19245707]
  22. Vet J. 2010 Aug;185(2):115-22 [PMID: 19481964]
  23. Thorax. 2002 Sep;57(9):765-70 [PMID: 12200519]
  24. Nat Protoc. 2006;1(3):1559-82 [PMID: 17406449]
  25. Mol Cell Probes. 2001 Oct;15(5):307-11 [PMID: 11735303]
  26. Genome Biol. 2007;8(2):R19 [PMID: 17291332]
  27. Equine Vet J Suppl. 2006 Aug;(36):529-34 [PMID: 17402478]
  28. BMC Vet Res. 2008 Feb 23;4:8 [PMID: 18294392]
  29. Res Vet Sci. 2009 Aug;87(1):20-5 [PMID: 19103451]
  30. Equine Vet J. 2001 Mar;33(2):143-9 [PMID: 11266063]
  31. Vet Immunol Immunopathol. 2009 Sep 15;131(1-2):65-72 [PMID: 19376596]
  32. Equine Vet J. 2011 Mar;43(2):145-52 [PMID: 21592207]
  33. Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 [PMID: 12824337]
  34. Eur Respir J. 2006 Feb;27(2):300-6 [PMID: 16452584]
  35. Int J Dev Biol. 2006;50(7):627-35 [PMID: 16892176]
  36. Genes Immun. 2005 Jun;6(4):279-84 [PMID: 15815687]
  37. Vet Immunol Immunopathol. 2002 Mar;85(3-4):147-58 [PMID: 11943316]
  38. J Biochem Biophys Methods. 2000 Nov 20;46(1-2):69-81 [PMID: 11086195]
  39. Vet Immunol Immunopathol. 1999 Jan 4;67(1):1-15 [PMID: 9950350]
  40. Nucleic Acids Res. 2009 Apr;37(6):e45 [PMID: 19237396]

MeSH Term

Animals
Bronchoalveolar Lavage
Bronchoalveolar Lavage Fluid
Female
Gene Expression Profiling
Horse Diseases
Horses
Inflammation
Lung Diseases
Male
Reference Standards
Reverse Transcriptase Polymerase Chain Reaction

Word Cloud

Created with Highcharts 10.0.0genesreferenceIADGAPDHexpressionBALhorsesGeNormgenestabilitycorticosteroidscellsHPRTRPL32SDHAusedquantitativetreatedbronchoalveolarlavagestabletreatmentB2MdeterminedsoftwaresnumbernormalizationrecommendedBACKGROUND:tremendouseffectresultsrelativequantificationpolymerasechainreactionEquineInflammatoryAirwayDiseasecommonconditionoftendiagnosisbasedclinicalsignsfluidcytologyaimstudyidentifymRNAirrespectiveRESULTS:sevencandidateACTBUBBqRT-PCRsamplestakenpre-post-dexamethasonefluticasonepropionatetwoweeks7Primers'efficienciescalculatedusingLinRegPCRNormFinderqBasePlusrankaccordingalsodetermineidealbestcombinationfoundstablyexpressedthreerankedleastBasedpair-wisevariationcut-offvaluerequiredoptimalfourincludedCONCLUSION:geometricmeanaccuratePCRdataonecanEvaluationsuitablestudiesinflammatoryairwaydisease

Similar Articles

Cited By