Longitudinal functional principal component analysis.

Sonja Greven, Ciprian Crainiceanu, Brian Caffo, Daniel Reich
Author Information
  1. Sonja Greven: Department of Statistics, Ludwig-Maximilians-University Munich, Ludwigstr. 33, 80539 Munich, Germany.

Abstract

We introduce models for the analysis of functional data observed at multiple time points. The dynamic behavior of functional data is decomposed into a time-dependent population average, baseline (or static) subject-specific variability, longitudinal (or dynamic) subject-specific variability, subject-visit-specific variability and measurement error. The model can be viewed as the functional analog of the classical longitudinal mixed effects model where random effects are replaced by random processes. Methods have wide applicability and are computationally feasible for moderate and large data sets. Computational feasibility is assured by using principal component bases for the functional processes. The methodology is motivated by and applied to a diffusion tensor imaging (DTI) study designed to analyze differences and changes in brain connectivity in healthy volunteers and multiple sclerosis (MS) patients. An R implementation is provided.87.

References

  1. Biometrika. 2008;95(3):773-778 [PMID: 19122890]
  2. J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199 [PMID: 19759841]
  3. Brain. 1989 Jun;112 ( Pt 3):799-835 [PMID: 2731030]
  4. Biometrics. 2003 Sep;59(3):676-85 [PMID: 14601769]
  5. Biostatistics. 2010 Apr;11(2):177-94 [PMID: 20089508]
  6. Biophys J. 1994 Jan;66(1):259-67 [PMID: 8130344]
  7. Neurology. 1999 May 12;52(8):1626-32 [PMID: 10331689]
  8. Neuroimage. 2006 Oct 15;33(1):154-60 [PMID: 16919971]
  9. IEEE Trans Med Imaging. 2010 Apr;29(4):1039-49 [PMID: 20335089]
  10. Ann Appl Stat. 2009 Mar 1;3(1):458-488 [PMID: 20221415]
  11. Am Stat. 2009 Nov 1;63(4):378-388 [PMID: 20160890]
  12. Biometrics. 2002 Mar;58(1):121-8 [PMID: 11890306]
  13. Stat Methods Med Res. 2004 Feb;13(1):49-62 [PMID: 14746440]
  14. AJNR Am J Neuroradiol. 1999 Sep;20(8):1491-9 [PMID: 10512236]
  15. J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561 [PMID: 20625442]
  16. J Magn Reson B. 1996 Jun;111(3):209-19 [PMID: 8661285]
  17. Biometrics. 1982 Dec;38(4):963-74 [PMID: 7168798]
  18. Electron J Stat. 2010;4:1022-1054 [PMID: 21743825]
  19. Ann Neurol. 1999 Feb;45(2):265-9 [PMID: 9989633]
  20. Biometrika. 1965 Dec;52(3):447-58 [PMID: 5858967]
  21. Biometrics. 2005 Dec;61(4):1064-75 [PMID: 16401280]
  22. Mult Scler. 2010 Feb;16(2):166-77 [PMID: 20142309]
  23. Neuroimage. 2007 Jul 1;36(3):606-16 [PMID: 17481923]
  24. Neuroimage. 2007 Nov 1;38(2):271-9 [PMID: 17870615]

Grants

  1. R01 EB012547/NIBIB NIH HHS
  2. R01 NS060910/NINDS NIH HHS
  3. R01 NS060910-02/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0functionaldatavariabilityanalysismultipledynamicsubject-specificlongitudinalmodeleffectsrandomprocessesprincipalcomponentintroducemodelsobservedtimepointsbehaviordecomposedtime-dependentpopulationaveragebaselinestaticsubject-visit-specificmeasurementerrorcanviewedanalogclassicalmixedreplacedMethodswideapplicabilitycomputationallyfeasiblemoderatelargesetsComputationalfeasibilityassuredusingbasesmethodologymotivatedapplieddiffusiontensorimagingDTIstudydesignedanalyzedifferenceschangesbrainconnectivityhealthyvolunteerssclerosisMSpatientsRimplementationprovided87Longitudinal

Similar Articles

Cited By