Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with their source genes.

Hiroaki Sakai, Hiroshi Mizuno, Yoshihiro Kawahara, Hironobu Wakimoto, Hiroshi Ikawa, Hiroyuki Kawahigashi, Hiroyuki Kanamori, Takashi Matsumoto, Takeshi Itoh, Brandon S Gaut
Author Information
  1. Hiroaki Sakai: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.

Abstract

Gene duplication occurs by either DNA- or RNA-based processes; the latter duplicates single genes via retroposition of messenger RNA. The expression of a retroposed gene copy (retrocopy) is expected to be uncorrelated with its source gene because upstream promoter regions are usually not part of the retroposition process. In contrast, DNA-based duplication often encompasses both the coding and the intergenic (promoter) regions; hence, expression is often correlated, at least initially, between DNA-based duplicates. In this study, we identified 150 retrocopies in rice (Oryza sativa L. ssp japonica), most of which represent ancient retroposition events. We measured their expression from high-throughput RNA sequencing (RNAseq) data generated from seven tissues. At least 66% of the retrocopies were expressed but at lower levels than their source genes. However, the tissue specificity of retrogenes was similar to their source genes, and expression between retrocopies and source genes was correlated across tissues. The level of correlation was similar between RNA- and DNA-based duplicates, and they decreased over time at statistically indistinguishable rates. We extended these observations to previously identified retrocopies in Arabidopsis thaliana, suggesting they may be general features of the process of retention of plant retrogenes.

References

  1. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  2. Nat Genet. 2005 May;37(5):501-6 [PMID: 15806101]
  3. Plant Sci. 2009 Apr;176(4):522-7 [PMID: 26493142]
  4. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12 [PMID: 16845082]
  5. Plant Physiol. 1999 Feb;119(2):651-62 [PMID: 9952462]
  6. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  7. BMC Bioinformatics. 2006 Jun 12;7:294 [PMID: 16764735]
  8. PLoS Biol. 2008 Apr 1;6(4):e80 [PMID: 18384235]
  9. Mol Biol Evol. 2007 Oct;24(10):2242-53 [PMID: 17646254]
  10. BMC Genomics. 2010 Dec 02;11:683 [PMID: 21122150]
  11. Physiol Genomics. 2003 Feb 06;12(3):251-9 [PMID: 12499447]
  12. Genome Res. 2007 Jul;17(7):1072-81 [PMID: 17556529]
  13. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3220-5 [PMID: 16492757]
  14. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12404-10 [PMID: 15240870]
  15. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8 [PMID: 20921408]
  16. Genome Res. 2002 Oct;12(10):1466-82 [PMID: 12368239]
  17. Plant Physiol. 2009 Dec;151(4):1943-51 [PMID: 19789289]
  18. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  19. Mol Biol Evol. 2005 Dec;22(12):2444-56 [PMID: 16120808]
  20. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  21. Genomics. 1997 Nov 15;46(1):24-36 [PMID: 9403055]
  22. Mol Biol Evol. 2008 Jun;25(6):1231-8 [PMID: 18367464]
  23. Science. 2003 Jul 18;301(5631):376-9 [PMID: 12869764]
  24. BMC Bioinformatics. 2009 Jun 16;10 Suppl 6:S8 [PMID: 19534757]
  25. Plant Physiol. 2005 Jun;138(2):935-48 [PMID: 15923328]
  26. Genome Res. 2004 Aug;14(8):1530-6 [PMID: 15256508]
  27. PLoS Genet. 2008 Aug 08;4(8):e1000150 [PMID: 18688271]
  28. Nucleic Acids Res. 2003 Jul 1;31(13):3497-500 [PMID: 12824352]
  29. Protein Eng. 1999 Feb;12(2):85-94 [PMID: 10195279]
  30. Genome Biol. 2007;8(2):R28 [PMID: 17326825]
  31. Plant Cell. 2006 Aug;18(8):1791-802 [PMID: 16829590]
  32. Plant Physiol. 2008 Oct;148(2):993-1003 [PMID: 18715958]
  33. Trends Plant Sci. 2010 Aug;15(8):471-8 [PMID: 20541961]
  34. PLoS Biol. 2008 Jun 10;6(6):e140 [PMID: 18547142]
  35. Science. 2004 Jan 23;303(5657):537-40 [PMID: 14739461]
  36. PLoS Biol. 2005 Nov;3(11):e357 [PMID: 16201836]
  37. Plant Cell. 1993 Sep;5(9):1039-48 [PMID: 8104574]
  38. BMC Genomics. 2008 May 22;9:241 [PMID: 18498650]
  39. Nucleic Acids Res. 2007 Jan;35(Database issue):D66-70 [PMID: 17071960]
  40. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4448-53 [PMID: 11904380]
  41. Annu Rev Genet. 1985;19:253-72 [PMID: 3909943]
  42. Nat Genet. 2000 Apr;24(4):363-7 [PMID: 10742098]
  43. Nat Rev Genet. 2002 Nov;3(11):827-37 [PMID: 12415313]
  44. Genome Res. 2003 Jul;13(7):1638-45 [PMID: 12840042]
  45. Gene. 2005 May 9;350(2):129-36 [PMID: 15784181]
  46. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  47. Nucleic Acids Res. 2008 Jan;36(Database issue):D1028-33 [PMID: 18089549]
  48. Genome. 2004 Oct;47(5):868-76 [PMID: 15499401]
  49. Genome Biol. 2007;8(1):R11 [PMID: 17233920]
  50. Mol Biol Evol. 2011 Jan;28(1):33-7 [PMID: 20889727]
  51. Plant Cell. 1994 Dec;6(12):1859-76 [PMID: 7866029]
  52. Trends Genet. 2002 Dec;18(12):609-13 [PMID: 12446139]
  53. Genome Res. 2009 Feb;19(2):243-54 [PMID: 19029538]
  54. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8 [PMID: 15161969]
  55. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5737-42 [PMID: 19325131]
  56. Bioinformatics. 2005 Mar 1;21(5):676-9 [PMID: 15509596]
  57. Science. 1993 Apr 2;260(5104):91-5 [PMID: 7682012]
  58. Plant Physiol. 2010 Feb;152(2):566-78 [PMID: 20023150]
  59. Mol Biol Evol. 2000 Oct;17(10):1483-98 [PMID: 11018155]
  60. Genome Res. 2002 Dec;12(12):1854-9 [PMID: 12466289]
  61. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9 [PMID: 8816790]
  62. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708-13 [PMID: 9520431]
  63. Nature. 2005 Aug 11;436(7052):793-800 [PMID: 16100779]
  64. Nat Rev Genet. 2009 Jan;10(1):19-31 [PMID: 19030023]
  65. PLoS Biol. 2005 Feb;3(2):e38 [PMID: 15685292]

Grants

  1. UL1 TR000001/NCATS NIH HHS

MeSH Term

Arabidopsis
Gene Duplication
Gene Expression
Genes, Plant
High-Throughput Nucleotide Sequencing
Oryza
RNA, Plant
Retroelements
Sequence Analysis, RNA

Chemicals

RNA, Plant
Retroelements