Aqueous phase separation as a possible route to compartmentalization of biological molecules.

Christine D Keating
Author Information
  1. Christine D Keating: Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA. keating@chem.psu.edu

Abstract

How could the incredible complexity of modern cells evolve from something simple enough to have appeared in a primordial soup? This enduring question has sparked the interest of researchers since Darwin first considered his theory of natural selection. Organic molecules, even potentially functional molecules including peptides and nucleotides, can be produced abiotically. Amphiphiles such as surfactants and lipids display remarkable self-assembly processes including the spontaneous formation of vesicles resembling the membranes of living cells. Nonetheless, numerous questions remain. Given the presumably dilute concentrations of macromolecules in the prebiotic pools where the earliest cells are thought to have appeared, how could the necessary components become concentrated and encapsulated within a semipermeable membrane? What would drive the further structural complexity that is a hallmark of modern living systems? The interior of modern cells is subdivided into microcompartments such as the nucleoid of bacteria or the organelles of eukaryotic cells. Even within what at first appears to be a single compartment, for example, the cytoplasm or nucleus, chemical composition is often nonuniform, containing gradients, macromolecular assemblies, and/or liquid droplets. What might the internal structure of intermediate evolutionary forms have looked like? The nonideal aqueous solution chemistry of macromolecules offers an attractive possible answer to these questions. Aqueous polymer solutions will form multiple coexisting thermodynamic phases under a variety of readily accessible conditions. In this Account, we describe aqueous phase separation as a model system for biological compartmentalization in both early and modern cells, with an emphasis on systems that have been encapsulated within a lipid bilayer. We begin with an introduction to aqueous phase separation and discuss how this phenomenon can lead to microcompartmentalization and could facilitate biopolymer encapsulation by partitioning of solutes between the phases. We then describe primitive model cells based on phase separation inside lipid vesicles, which mimic several basic properties of biological cells: microcompartmentation, protein relocalization in response to stimulus, loss of symmetry, and asymmetric vesicle division. We observe these seemingly complex phenomena in the absence of genetic molecules, enzymes, or cellular machinery, and as a result these processes could provide clues to possible intermediates in the early evolution of cell-like assemblies.

References

  1. Naturwissenschaften. 2009 Nov;96(11):1265-92 [PMID: 19760276]
  2. Langmuir. 2007 Jun 19;23(13):7148-54 [PMID: 17516666]
  3. Nature. 1965 Jan 23;205:328-40 [PMID: 14243409]
  4. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4731-6 [PMID: 21383120]
  5. Cold Spring Harb Perspect Biol. 2010 Nov;2(11):a002089 [PMID: 20534710]
  6. FEBS Lett. 1995 Mar 20;361(2-3):135-9 [PMID: 7698310]
  7. J Colloid Interface Sci. 2011 Sep 15;361(2):407-22 [PMID: 21705008]
  8. J Am Chem Soc. 2005 Sep 28;127(38):13213-9 [PMID: 16173749]
  9. Science. 1960 Jul 22;132(3421):200-8 [PMID: 17748933]
  10. Anal Chem. 2006 Jan 15;78(2):379-86 [PMID: 16408917]
  11. J Control Release. 2010 Nov 1;147(3):413-9 [PMID: 20691739]
  12. Annu Rev Biophys. 2008;37:375-97 [PMID: 18573087]
  13. Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):5920-5 [PMID: 15788532]
  14. Chembiochem. 2009 Apr 17;10(6):1056-63 [PMID: 19263449]
  15. Biophys J. 2003 Nov;85(5):3074-83 [PMID: 14581208]
  16. Int Rev Cytol. 2000;192:171-87 [PMID: 10553279]
  17. Langmuir. 2005 Aug 30;21(18):8478-86 [PMID: 16114960]
  18. J Am Chem Soc. 2002 Nov 13;124(45):13374-5 [PMID: 12418876]
  19. J Am Chem Soc. 2008 Sep 17;130(37):12252-3 [PMID: 18712871]
  20. Microbiol Mol Biol Rev. 2005 Dec;69(4):544-64 [PMID: 16339735]
  21. Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17669-74 [PMID: 15591347]
  22. Chembiochem. 2010 Sep 24;11(14):1989-92 [PMID: 20806308]
  23. Nat Chem. 2011 Aug 07;3(9):720-4 [PMID: 21860462]
  24. Nature. 2003 Oct 23;425(6960):821-4 [PMID: 14574408]
  25. Res Microbiol. 2009 Sep;160(7):449-56 [PMID: 19580865]
  26. Langmuir. 2008 Dec 2;24(23):13565-71 [PMID: 18980360]
  27. Nature. 2008 Jul 3;454(7200):122-5 [PMID: 18528332]
  28. Science. 2009 Jun 26;324(5935):1729-32 [PMID: 19460965]
  29. J Mol Biol. 1964 May;8:660-8 [PMID: 14187392]
  30. J Am Chem Soc. 2009 Jul 1;131(25):9094-9 [PMID: 19496598]
  31. J Am Chem Soc. 2008 Jan 16;130(2):756-62 [PMID: 18092782]
  32. J Am Chem Soc. 2011 Jun 22;133(24):9545-55 [PMID: 21591721]
  33. Science. 1953 May 15;117(3046):528-9 [PMID: 13056598]
  34. Biokhimiia. 1963 Jul-Aug;28:671-5 [PMID: 14068582]
  35. Biophys Chem. 2001 Feb 15;89(2-3):219-29 [PMID: 11254214]
  36. Nat Chem. 2011 Sep 04;3(10):775-81 [PMID: 21941249]
  37. Langmuir. 2010 Apr 20;26(8):5697-705 [PMID: 19928785]
  38. J Am Chem Soc. 2008 Jun 11;130(23):7400-6 [PMID: 18479139]

Grants

  1. R01 GM078352/NIGMS NIH HHS
  2. R01GM078352/NIGMS NIH HHS

MeSH Term

Biopolymers
Lipid Bilayers
Liposomes
Nucleotides
Peptides
Surface-Active Agents
Thermodynamics
Water

Chemicals

Biopolymers
Lipid Bilayers
Liposomes
Nucleotides
Peptides
Surface-Active Agents
Water

Word Cloud

Created with Highcharts 10.0.0cellsmodernmoleculesphaseseparationwithinaqueouspossiblebiologicalcomplexityappearedfirstincludingcanprocessesvesicleslivingquestionsmacromoleculesencapsulatedassembliesAqueousphasesdescribemodelcompartmentalizationearlylipidincredibleevolvesomethingsimpleenoughprimordialsoup?enduringquestionsparkedinterestresearcherssinceDarwinconsideredtheorynaturalselectionOrganicevenpotentiallyfunctionalpeptidesnucleotidesproducedabioticallyAmphiphilessurfactantslipidsdisplayremarkableself-assemblyspontaneousformationresemblingmembranesNonethelessnumerousremainGivenpresumablydiluteconcentrationsprebioticpoolsearliestthoughtnecessarycomponentsbecomeconcentratedsemipermeablemembrane?drivestructuralhallmarksystems?interiorsubdividedmicrocompartmentsnucleoidbacteriaorganelleseukaryoticEvenappearssinglecompartmentexamplecytoplasmnucleuschemicalcompositionoftennonuniformcontaininggradientsmacromolecularand/orliquiddropletsmightinternalstructureintermediateevolutionaryformslookedlike?nonidealsolutionchemistryoffersattractiveanswerpolymersolutionswillformmultiplecoexistingthermodynamicvarietyreadilyaccessibleconditionsAccountsystememphasissystemsbilayerbeginintroductiondiscussphenomenonleadmicrocompartmentalizationfacilitatebiopolymerencapsulationpartitioningsolutesprimitivebasedinsidemimicseveralbasicpropertiescells:microcompartmentationproteinrelocalizationresponsestimuluslosssymmetryasymmetricvesicledivisionobserveseeminglycomplexphenomenaabsencegeneticenzymescellularmachineryresultprovidecluesintermediatesevolutioncell-likeroute

Similar Articles

Cited By