Mixed population of competing totally asymmetric simple exclusion processes with a shared reservoir of particles.
Philip Greulich, Luca Ciandrini, Rosalind J Allen, M Carmen Romano
Author Information
Philip Greulich: SUPA, School of Physics & Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom.
We introduce a mean-field theoretical framework to describe multiple totally asymmetric simple exclusion processes (TASEPs) with different lattice lengths and entry and exit rates, competing for a finite reservoir of particles. We present relations for the partitioning of particles between the reservoir and the lattices: These relations allow us to show that competition for particles can have nontrivial effects on the phase behavior of individual lattices. For a system with nonidentical lattices, we find that when a subset of lattices undergoes a phase transition from low to high density, the entire set of lattice currents becomes independent of total particle number. We generalize our approach to systems with a continuous distribution of lattice parameters, for which we demonstrate that measurements of the current carried by a single lattice type can be used to extract the entire distribution of lattice parameters. Our approach applies to populations of TASEPs with any distribution of lattice parameters and could easily be extended beyond the mean-field case.
References
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):041905
[PMID: 17500919]
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031142
[PMID: 19905097]
Phys Rev Lett. 2001 Sep 3;87(10):108101
[PMID: 11531504]
Phys Rev Lett. 2005 Sep 9;95(11):118101
[PMID: 16197050]
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18159-64
[PMID: 19017803]