Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation.

Huaying Zhao, Chad A Brautigam, Rodolfo Ghirlando, Peter Schuck
Author Information
  1. Huaying Zhao: Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.

Abstract

Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in sedimentation velocity (SV) size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of analytical ultracentrifugation (AUC), such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multisignal modeling and mass conservation approaches in SV and sedimentation equilibrium (SE), in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multiprotein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current unit is to describe the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE.

References

  1. Methods. 2013 Mar;59(3):287-300 [PMID: 23219517]
  2. Eur Biophys J. 2010 Jul;39(8):1261-75 [PMID: 19806353]
  3. Methods Enzymol. 2004;384:185-212 [PMID: 15081688]
  4. Methods. 2011 May;54(1):16-30 [PMID: 21315155]
  5. Nat Commun. 2011 Jun 07;2:335 [PMID: 21654635]
  6. Biophys J. 2010 May 19;98(9):2005-13 [PMID: 20441765]
  7. J Am Chem Soc. 2010 Sep 22;132(37):13026-45 [PMID: 20731394]
  8. PLoS One. 2011;6(10):e26221 [PMID: 22028836]
  9. Biophys J. 2003 Apr;84(4):2562-9 [PMID: 12668464]
  10. Biopolymers. 1975 Aug;14(8):1685-1700 [PMID: 1156660]
  11. Methods. 2011 May;54(1):136-44 [PMID: 21276851]
  12. Biophys J. 2000 Mar;78(3):1606-19 [PMID: 10692345]
  13. J Biol Chem. 1978 Apr 10;253(7):2073-7 [PMID: 632258]
  14. Science. 1966 Apr 15;152(3720):359-61 [PMID: 17775166]
  15. Anal Biochem. 1993 Feb 15;209(1):130-5 [PMID: 8465945]
  16. Methods. 2011 May;54(1):167-74 [PMID: 21112402]
  17. J Biol Phys. 2007 Dec;33(5-6):399-419 [PMID: 19669527]
  18. Biopolymers. 2000 Oct 15;54(5):328-41 [PMID: 10935973]
  19. Arch Biochem Biophys. 1967 Mar;119(1):230-9 [PMID: 6052420]
  20. Methods. 2011 May;54(1):157-66 [PMID: 21338686]
  21. J Biol Chem. 2001 Mar 30;276(13):9679-87 [PMID: 11121414]
  22. Biophys J. 2002 Feb;82(2):1096-111 [PMID: 11806949]
  23. J Mol Biol. 2008 Mar 7;376(5):1417-25 [PMID: 18234217]
  24. Anal Biochem. 1992 Jun;203(2):295-301 [PMID: 1416025]
  25. J Pharm Sci. 2009 Jan;98(1):50-62 [PMID: 18425806]
  26. Anal Biochem. 2010 Jun 15;401(2):280-7 [PMID: 20206114]
  27. Biophys Chem. 1976 Jul;5(1-2):185-96 [PMID: 963214]
  28. Anal Biochem. 1992 Nov 1;206(2):215-25 [PMID: 1443589]
  29. Methods. 2011 May;54(1):31-8 [PMID: 21187151]
  30. Nat Struct Mol Biol. 2006 Sep;13(9):798-805 [PMID: 16906159]
  31. AAPS J. 2006 Sep 22;8(3):E590-605 [PMID: 17025277]
  32. Biophys Chem. 2004 Mar 1;108(1-3):187-200 [PMID: 15043929]
  33. Comput Phys Commun. 2008 Jan 15;178(2):105-120 [PMID: 18196178]
  34. J Pharm Sci. 2007 Feb;96(2):268-79 [PMID: 17080424]
  35. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):E472-9 [PMID: 21676863]
  36. Methods. 2011 May;54(1):101-14 [PMID: 21073955]
  37. Biophys J. 2006 Jun 15;90(12):4651-61 [PMID: 16565040]
  38. Biochemistry. 1999 Jul 20;38(29):9379-88 [PMID: 10413513]
  39. Eur Biophys J. 2009 Oct;38(8):1079-99 [PMID: 19644686]
  40. Anal Biochem. 2012 Feb 15;421(2):755-8 [PMID: 22197415]
  41. Methods Enzymol. 2000;321:100-20 [PMID: 10909053]
  42. Eur Biophys J. 2010 Feb;39(3):405-14 [PMID: 19247646]
  43. J Gen Physiol. 2012 May;139(5):371-88 [PMID: 22508847]
  44. Anal Biochem. 2010 Dec 1;407(1):89-103 [PMID: 20667444]
  45. Macromol Biosci. 2010 Jul 7;10(7):736-45 [PMID: 20480511]
  46. Biophys J. 2005 Jul;89(1):619-34 [PMID: 15863475]
  47. Methods. 2011 May;54(1):83-91 [PMID: 21187149]
  48. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):81-6 [PMID: 15613487]
  49. Methods Enzymol. 1973;27:306-45 [PMID: 4773288]
  50. Methods Enzymol. 2009;455:419-46 [PMID: 19289215]
  51. Biophys J. 2010 Jun 2;98(11):2741-51 [PMID: 20513419]
  52. J Vis Exp. 2009 Nov 05;(33): [PMID: 19893484]
  53. Biochemistry. 1968 Mar;7(3):1054-76 [PMID: 5657846]
  54. EMBO J. 2012 Apr 4;31(7):1714-26 [PMID: 22314235]
  55. Anal Chem. 2012 Nov 6;84(21):9513-9 [PMID: 23020071]
  56. Methods. 2011 May;54(1):39-55 [PMID: 21256217]
  57. Biochemistry. 1964 Mar;3:297-317 [PMID: 14155091]
  58. Biopolymers. 1981 Dec;20(12):2671-90 [PMID: 7034800]
  59. Biophys J. 2008 Jul;95(1):54-65 [PMID: 18390609]
  60. Biochemistry. 2008 Nov 25;47(47):12319-31 [PMID: 18980386]
  61. Biophys J. 1997 Jan;72(1):397-407 [PMID: 8994626]
  62. Biomacromolecules. 2007 Jun;8(6):2011-24 [PMID: 17521163]
  63. Methods. 2011 May;54(1):145-56 [PMID: 21167941]
  64. Nat Commun. 2012 Jan 10;3:614 [PMID: 22233624]
  65. Anal Biochem. 2004 Mar 15;326(2):234-56 [PMID: 15003564]
  66. Biophys J. 1998 Jan;74(1):466-74 [PMID: 9449347]
  67. Biophys J. 2006 Sep 1;91(5):1591-603 [PMID: 16714342]
  68. PLoS Biol. 2010 Dec 07;8(12):e1000555 [PMID: 21151884]
  69. Methods. 2011 May;54(1):56-66 [PMID: 21112401]
  70. Methods. 2011 May;54(1):4-15 [PMID: 21187153]
  71. Biochemistry. 2010 Mar 23;49(11):2443-53 [PMID: 20166740]
  72. Biophys J. 2001 Oct;81(4):1868-80 [PMID: 11566761]
  73. Anal Biochem. 2000 Oct 1;285(1):135-42 [PMID: 10998273]
  74. Anal Biochem. 1970 Mar;34:237-61 [PMID: 4314972]
  75. Biophys J. 2011 May 4;100(9):2309-17 [PMID: 21539801]
  76. Anal Biochem. 2003 Sep 1;320(1):104-24 [PMID: 12895474]
  77. Biophys J. 1999 Apr;76(4):2288-96 [PMID: 10096923]
  78. J Mol Biol. 2004 Feb 20;336(3):597-605 [PMID: 15095975]
  79. Biophys J. 2000 Feb;78(2):719-30 [PMID: 10653785]

Grants

  1. R01 DK026758/NIDDK NIH HHS
  2. AI056305/NIAID NIH HHS
  3. ZIA EB000051/Intramural NIH HHS
  4. ZIA EB000051-06/Intramural NIH HHS
  5. R01 AI056305/NIAID NIH HHS
  6. GM056322/NIGMS NIH HHS
  7. DK026758/NIDDK NIH HHS
  8. R01 GM056322/NIGMS NIH HHS

MeSH Term

Algorithms
Buffers
Data Interpretation, Statistical
Molecular Weight
Protein Binding
Proteins
Software
Solutions
Ultracentrifugation

Chemicals

Buffers
Proteins
Solutions

Word Cloud

Created with Highcharts 10.0.0sedimentationmodelingSVstudyproteinsexperimentaldatacurrentstrategiesallowedvelocityapplicationsanalyticalultracentrifugationproteinmembraneequilibriumSEtoolsinteractionsModerncomputationaldirectprocessheterogeneousmixturesresultingsize-distributionanalysessignificantlyimproveddetectionlimitsstronglyenhancedresolutionadvancestransformedpracticerenderingprimarymethodchoiceexistingAUCself-hetero-associationbiotechnologyNewglobalmultisignalmassconservationapproachesconjunctioneffective-particleframeworkinterpretingboundarystructureinteractingsystemswellexplicitreaction/diffusion/sedimentationequationsledrobustpowerfulreversiblemultiproteincomplexesFurthermoremodernmathematicalcapabilitiesdetaileddescriptionmanyaspectsacquiredthusenablingnovelopportunitiesimportantimplicationssamplepreparationacquisitiongoalunitdescribesolubledetergent-solubilizedOverviewmethods

Similar Articles

Cited By