Functional robust support vector machines for sparse and irregular longitudinal data.

Yichao Wu, Yufeng Liu
Author Information
  1. Yichao Wu: Department of Statistics, North Carolina State University, Raleigh, NC 27695 ( wu@stat.ncsu.edu ).

Abstract

Functional and longitudinal data are becoming more and more common in practice. This paper focuses on sparse and irregular longitudinal data with a multicategory response. The predictor consists of sparse and irregular observations, potentially contaminated with measurement errors, on the predictor trajectory. To deal with this type of complicated predictors, we borrow the strength of large margin classifiers in statistical learning for classification of sparse and irregular longitudinal data. In particular, we propose functional robust truncated-hinge-loss support vector machines to perform multicategory classification with the aid of functional principal component analysis.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):262-7 [PMID: 10618406]
  2. Bioinformatics. 2006 Jan 1;22(1):68-76 [PMID: 16257986]
  3. J Am Stat Assoc. 2010 Mar 1;105(489):424-436 [PMID: 21113386]
  4. J Comput Graph Stat. 2016;25(3):806-825 [PMID: 27891045]

Grants

  1. R01 CA149569/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0longitudinaldatasparseirregularmulticategoryfunctionalFunctionalpredictorclassificationrobusttruncated-hinge-losssupportvectormachinesprincipalcomponentanalysisSVMbecomingcommonpracticepaperfocusesresponseconsistsobservationspotentiallycontaminatedmeasurementerrorstrajectorydealtypecomplicatedpredictorsborrowstrengthlargemarginclassifiersstatisticallearningparticularproposeperformaidClassificationreproducingkernelHilbertspace

Similar Articles

Cited By