The quest for a unified view of bacterial land colonization.

Hao Wu, Yongjun Fang, Jun Yu, Zhang Zhang
Author Information
  1. Hao Wu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  2. Yongjun Fang: Key Lab of Rubber Biology, Ministry of Agriculture and Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China.
  3. Jun Yu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  4. Zhang Zhang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.

Abstract

Exploring molecular mechanisms underlying bacterial water-to-land transition represents a critical start toward a better understanding of the functioning and stability of the terrestrial ecosystems. Here, we perform comprehensive analyses based on a large variety of bacteria by integrating taxonomic, phylogenetic and metagenomic data, in the quest for a unified view that elucidates genomic, evolutionary and ecological dynamics of the marine progenitors in adapting to nonaquatic environments. We hypothesize that bacterial land colonization is dominated by a single-gene sweep, that is, the emergence of dnaE2 derived from an early duplication event of the primordial dnaE, followed by a series of niche-specific genomic adaptations, including GC content increase, intensive horizontal gene transfer and constant genome expansion. In addition, early bacterial radiation may be stimulated by an explosion of land-borne hosts (for example, plants and animals) after initial land colonization events.

References

  1. Nucleic Acids Res. 2004 Sep 21;32(16):4937-44 [PMID: 15383646]
  2. Biochem Biophys Res Commun. 2006 Aug 18;347(1):1-3 [PMID: 16815305]
  3. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  4. BMC Evol Biol. 2004 Nov 09;4:44 [PMID: 15535883]
  5. Science. 2012 Apr 27;336(6080):459-62 [PMID: 22539718]
  6. Nature. 2013 Jul 11;499(7457):205-8 [PMID: 23760485]
  7. Braz J Microbiol. 2009 Oct;40(4):827-37 [PMID: 24031430]
  8. Science. 2004 Apr 30;304(5671):728-30 [PMID: 15073324]
  9. Science. 2004 Apr 2;304(5667):66-74 [PMID: 15001713]
  10. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3160-5 [PMID: 14973198]
  11. Nature. 2011 Jan 6;469(7328):93-6 [PMID: 21170026]
  12. Stand Genomic Sci. 2010 Jan 28;2(1):49-56 [PMID: 21304677]
  13. J Bacteriol. 2012 Nov;194(21):5968-9 [PMID: 23045487]
  14. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21748-53 [PMID: 20007373]
  15. Curr Opin Biotechnol. 2011 Jun;22(3):456-64 [PMID: 21333523]
  16. EMBO Rep. 2001 May;2(5):376-81 [PMID: 11375927]
  17. Astrobiology. 2011 May;11(4):303-21 [PMID: 21545270]
  18. Biol Direct. 2012 Jan 10;7:2 [PMID: 22230424]
  19. PLoS Genet. 2011 Dec;7(12):e1002430 [PMID: 22216014]
  20. Soil Biol Biochem. 2011 Jul;43(7):1450-1455 [PMID: 22267877]
  21. Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 [PMID: 16407148]
  22. Mol Ecol. 2012 Dec;21(24):6134-51 [PMID: 23017151]
  23. Nucleic Acids Res. 2012 Jan;40(Database issue):D571-9 [PMID: 22135293]
  24. Front Genet. 2012 Feb 28;3:3 [PMID: 22403581]
  25. Antonie Van Leeuwenhoek. 2003;83(2):135-48 [PMID: 12785307]
  26. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20655-60 [PMID: 23185008]
  27. Nature. 2010 Mar 25;464(7288):543-8 [PMID: 20336137]
  28. Front Microbiol. 2012 Dec 06;3:420 [PMID: 23230432]
  29. Trends Microbiol. 2003 Jun;11(6):248-53 [PMID: 12823939]
  30. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2510-5 [PMID: 18268351]
  31. Appl Environ Microbiol. 2006 Mar;72(3):2110-7 [PMID: 16517660]
  32. Microbiology (Reading). 2007 Aug;153(Pt 8):2648-2654 [PMID: 17660429]
  33. Appl Environ Microbiol. 1999 Sep;65(9):4099-107 [PMID: 10473422]
  34. Front Microbiol. 2013 Mar 12;4:41 [PMID: 23487592]
  35. Nature. 2011 May 12;473(7346):208-11 [PMID: 21562561]
  36. J Bacteriol. 2004 Oct;186(20):6876-84 [PMID: 15466041]
  37. Int J Syst Evol Microbiol. 2011 Sep;61(Pt 9):2227-2230 [PMID: 20952545]
  38. DNA Res. 2003 Aug 31;10(4):137-45 [PMID: 14621292]
  39. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  40. Trends Microbiol. 2009 May;17(5):196-204 [PMID: 19375326]
  41. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W475-8 [PMID: 21470960]
  42. Curr Opin Biotechnol. 2006 Jun;17(3):241-9 [PMID: 16704931]
  43. Antonie Van Leeuwenhoek. 2012 Feb;101(2):205-15 [PMID: 21792685]
  44. Antonie Van Leeuwenhoek. 2007 May;91(4):351-72 [PMID: 17072531]
  45. ISME J. 2012 May;6(5):1007-17 [PMID: 22134642]
  46. Curr Biol. 2007 May 15;17(10):R373-86 [PMID: 17502094]
  47. Nat Rev Microbiol. 2010 Jul;8(7):523-9 [PMID: 20531276]
  48. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15352-7 [PMID: 14660793]
  49. ISME J. 2012 Jan;6(1):136-45 [PMID: 21866182]
  50. Trends Microbiol. 2013 Mar;21(3):120-8 [PMID: 23218799]
  51. Trends Microbiol. 2007 Feb;15(2):54-62 [PMID: 17184993]
  52. OMICS. 2007 Fall;11(3):252-79 [PMID: 17883338]
  53. Science. 2006 Jul 14;313(5784):236-8 [PMID: 16763111]
  54. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18634-9 [PMID: 20937887]
  55. Int J Syst Bacteriol. 1998 Jul;48 Pt 3:965-72 [PMID: 9734053]
  56. Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19709-14 [PMID: 23150571]
  57. Genes Dev. 2007 Jun 15;21(12):1456-71 [PMID: 17575047]
  58. Science. 2012 Aug 31;337(6098):1107-11 [PMID: 22936781]
  59. PLoS Biol. 2004 Oct;2(10):e303 [PMID: 15383840]
  60. EMBO Rep. 2005 Dec;6(12):1208-13 [PMID: 16200051]
  61. Microbiology (Reading). 2010 Mar;156(Pt 3):757-763 [PMID: 19959572]
  62. Nucleic Acids Res. 2010 Jul;38(12):3857-68 [PMID: 20194113]
  63. Nature. 2004 Dec 16;432(7019):910-3 [PMID: 15602564]
  64. Int J Evol Biol. 2012;2012:342482 [PMID: 22536540]
  65. Genome Res. 2011 Apr;21(4):599-609 [PMID: 21270172]
  66. ISME J. 2012 Feb;6(2):259-72 [PMID: 21796217]
  67. J Bacteriol. 2003 Dec;185(23):6790-800 [PMID: 14617643]
  68. Microb Ecol. 1998 Jul;36(1):37-50 [PMID: 9622563]
  69. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21390-5 [PMID: 23236140]
  70. Trends Microbiol. 2009 Dec;17(12):529-35 [PMID: 19853457]
  71. Genome Biol. 2009;10(4):R45 [PMID: 19393086]
  72. ISME J. 2012 Mar;6(3):692-702 [PMID: 21938020]
  73. Environ Microbiol. 2004 Sep;6(9):981-9 [PMID: 15305923]
  74. Science. 2010 Oct 1;330(6000):50 [PMID: 20929803]
  75. Environ Microbiol. 2013 Jul;15(7):1956-68 [PMID: 23078522]
  76. Mol Biol Evol. 2009 Feb;26(2):335-43 [PMID: 18988685]
  77. ISME J. 2013 Aug;7(8):1568-81 [PMID: 23486248]
  78. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2567-72 [PMID: 15701695]
  79. Environ Microbiol Rep. 2013 Feb;5(1):117-26 [PMID: 23757140]
  80. PLoS One. 2009;4(1):e4207 [PMID: 19148287]

MeSH Term

Adaptation, Physiological
Animals
Aquatic Organisms
Bacteria
Base Composition
Biological Evolution
DNA Polymerase III
Ecosystem
Gene Transfer, Horizontal
Genome, Bacterial
Metagenome
Phylogeny
Plants

Chemicals

DNA polymerase III, alpha subunit
DNA Polymerase III

Word Cloud

Similar Articles

Cited By