The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.

Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, John L Rinn
Author Information
  1. Cole Trapnell: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
  2. Davide Cacchiarelli: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
  3. Jonna Grimsby: The Broad Institute of MIT and Harvard, Cambridge, Massachussetts, USA.
  4. Prapti Pokharel: The Broad Institute of MIT and Harvard, Cambridge, Massachussetts, USA.
  5. Shuqiang Li: Fluidigm Corporation, South San Francisco, California, USA.
  6. Michael Morse: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
  7. Niall J Lennon: The Broad Institute of MIT and Harvard, Cambridge, Massachussetts, USA.
  8. Kenneth J Livak: Fluidigm Corporation, South San Francisco, California, USA.
  9. Tarjei S Mikkelsen: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
  10. John L Rinn: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.

Abstract

Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation.

Associated Data

GEO | GSE52529

References

  1. Cell Rep. 2012 Sep 27;2(3):666-73 [PMID: 22939981]
  2. Development. 2012 Feb;139(4):641-56 [PMID: 22274696]
  3. Gene. 2008 Apr 15;412(1-2):84-94 [PMID: 18313863]
  4. Neural Netw. 2000 May-Jun;13(4-5):411-30 [PMID: 10946390]
  5. Nat Biotechnol. 2012 Aug;30(8):777-82 [PMID: 22820318]
  6. Science. 2011 May 6;332(6030):687-96 [PMID: 21551058]
  7. FASEB J. 2004 Feb;18(2):403-5 [PMID: 14688207]
  8. Nature. 2013 Jun 13;498(7453):236-40 [PMID: 23685454]
  9. Bioinformatics. 2003 May 1;19(7):842-50 [PMID: 12724294]
  10. Cell. 2012 Sep 14;150(6):1209-22 [PMID: 22980981]
  11. Nat Cell Biol. 2010 Feb;12(2):153-63 [PMID: 20081841]
  12. Nature. 2012 Sep 6;489(7414):83-90 [PMID: 22955618]
  13. PLoS Comput Biol. 2011 Apr;7(4):e1001123 [PMID: 21533210]
  14. Cell Stem Cell. 2010 May 7;6(5):468-78 [PMID: 20452321]
  15. IEEE/ACM Trans Comput Biol Bioinform. 2008 Apr-Jun;5(2):172-82 [PMID: 18451427]
  16. Genes Dev. 2005 Mar 1;19(5):553-69 [PMID: 15706034]
  17. Cell Growth Differ. 1997 Mar;8(3):275-82 [PMID: 9056669]
  18. Mol Cell. 2007 Jul 6;27(1):53-66 [PMID: 17612490]
  19. Dev Cell. 2010 Apr 20;18(4):675-85 [PMID: 20412781]
  20. Development. 2005 Jun;132(12):2685-95 [PMID: 15930108]
  21. Nat Biotechnol. 2011 Oct 02;29(10):886-91 [PMID: 21964415]
  22. Nat Rev Genet. 2013 Sep;14(9):618-30 [PMID: 23897237]
  23. Nat Methods. 2012 Feb 28;9(3):215-6 [PMID: 22373907]

Grants

  1. DP2 OD006670/NIH HHS
  2. P01 GM099117/NIGMS NIH HHS
  3. 1DP2OD00667/NIH HHS
  4. P01GM099117/NIGMS NIH HHS
  5. P50 HG006193/NHGRI NIH HHS
  6. P50HG006193-01/NHGRI NIH HHS

MeSH Term

Algorithms
Cell Differentiation
Cells, Cultured
Gene Expression Profiling
Gene Expression Regulation
Genomics
Humans
Muscle Development
Myoblasts
Reproducibility of Results
Transcription Factors
Transcriptome

Chemicals

Transcription Factors