Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers.

Debora Baroni, Olga Zegarra-Moran, Agneta Svensson, Oscar Moran
Author Information
  1. Debora Baroni: Istituto di Biofisica, CNR, via De Marini, 6, 16149, Genoa, Italy.

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors are new drugs that target the basic CFTR protein defect and are expected to benefit cystic fibrosis patients. To optimize the substances so far proposed for human use, and to minimise unwanted side effects, it is essential to investigate possible interactions between the drugs and cell components. We used small-angle X-ray scattering with synchrotron radiation to analyse the effects of two representative drugs, the potentiator VX-770 (Ivacaftor), approved for human use, and the corrector VX-809 (Lumacaftor), on a model phospholipid membrane. By reconstruction of the electron density profile of unilamellar vesicles treated with VX-770 or VX-809 we found that these drugs penetrate the phospholipid bilayer. VX-809 becomes homogeneously distributed throughout the bilayer whereas VX-770 accumulates predominantly in the internal leaflet, behaviour probably favoured by the asymmetry of the bilayer, because of vesicle curvature. Penetration of the bilayer by these drugs, probably as part of the mechanisms of permeation, causes destabilization of the membrane; this must be taken into account during future drug development.

References

  1. EMBO J. 1994 Dec 15;13(24):6076-86 [PMID: 7529176]
  2. Biochim Biophys Acta. 2013 Feb;1828(2):528-34 [PMID: 23123565]
  3. Biochim Biophys Acta. 1986 Nov 6;862(1):17-26 [PMID: 3490275]
  4. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt B):4000-9 [PMID: 11088921]
  5. Langmuir. 2007 Jan 30;23(3):1292-9 [PMID: 17241048]
  6. Biophys J. 2003 Sep;85(3):1600-10 [PMID: 12944276]
  7. Nature. 1977 Jul 28;268(5618):356-8 [PMID: 69993]
  8. Biochim Biophys Acta. 1991 Jan 30;1061(2):297-303 [PMID: 1998698]
  9. Am J Respir Cell Mol Biol. 2013 Sep;49(3):445-52 [PMID: 23600628]
  10. Nature. 1991 Dec 19-26;354(6354):526-8 [PMID: 1722027]
  11. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18843-8 [PMID: 21976485]
  12. Colloids Surf B Biointerfaces. 2004 Dec 25;39(4):151-8 [PMID: 15555896]
  13. Hum Mutat. 2002 Jun;19(6):575-606 [PMID: 12007216]
  14. J Mol Biol. 1983 May 15;166(2):211-7 [PMID: 6854644]
  15. Cell Mol Life Sci. 2005 Feb;62(4):446-60 [PMID: 15719171]
  16. N Engl J Med. 2011 Nov 3;365(18):1663-72 [PMID: 22047557]

MeSH Term

Aminophenols
Aminopyridines
Benzodioxoles
Cystic Fibrosis Transmembrane Conductance Regulator
Lipid Bilayers
Phospholipids
Protein Binding
Quinolones
Temperature
Unilamellar Liposomes

Chemicals

Aminophenols
Aminopyridines
Benzodioxoles
Lipid Bilayers
Phospholipids
Quinolones
Unilamellar Liposomes
Cystic Fibrosis Transmembrane Conductance Regulator
ivacaftor
lumacaftor

Word Cloud

Created with Highcharts 10.0.0drugsCFTRbilayerVX-770VX-809phospholipidfibrosishumanuseeffectspotentiatorcorrectormembraneprobablyCystictransmembraneconductanceregulatorpotentiatorscorrectorsnewtargetbasicproteindefectexpectedbenefitcysticpatientsoptimizesubstancesfarproposedminimiseunwantedsideessentialinvestigatepossibleinteractionscellcomponentsusedsmall-angleX-rayscatteringsynchrotronradiationanalysetworepresentativeIvacaftorapprovedLumacaftormodelreconstructionelectrondensityprofileunilamellarvesiclestreatedfoundpenetratebecomeshomogeneouslydistributedthroughoutwhereasaccumulatespredominantlyinternalleafletbehaviourfavouredasymmetryvesiclecurvaturePenetrationpartmechanismspermeationcausesdestabilizationmusttakenaccountfuturedrugdevelopmentDirectinteractionbilayers

Similar Articles

Cited By