Mycoloop: chytrids in aquatic food webs.

Maiko Kagami, Takeshi Miki, Gaku Takimoto
Author Information
  1. Maiko Kagami: Faculty of Science, Toho University Funabashi, Japan.
  2. Takeshi Miki: Institute of Oceanography, National Taiwan University Taipei, Taiwan.
  3. Gaku Takimoto: Faculty of Science, Toho University Funabashi, Japan.

Abstract

Parasites are ecologically significant in various ecosystems through their role in shaping food web structure, facilitating energy transfer, and controlling disease. Here in this review, we mainly focus on parasitic chytrids, the dominant parasites in aquatic ecosystems, and explain their roles in aquatic food webs, particularly as prey for zooplankton. Chytrids have a free-living zoosporic stage, during which they actively search for new hosts. Zoospores are excellent food for zooplankton in terms of size, shape, and nutritional quality. In the field, densities of chytrids can be high, ranging from 10(1) to 10(9) spores L(-1). When large inedible phytoplankton species are infected by chytrids, nutrients within host cells are transferred to zooplankton via the zoospores of parasitic chytrids. This new pathway, the "mycoloop," may play an important role in shaping aquatic ecosystems, by altering sinking fluxes or determining system stability. The grazing of zoospores by zooplankton may also suppress outbreaks of parasitic chytrids. A food web model demonstrated that the contribution of the mycoloop to zooplankton production increased with nutrient availability and was also dependent on the stability of the system. Further studies with advanced molecular tools are likely to discover greater chytrid diversity and evidence of additional mycoloops in lakes and oceans.

Keywords

References

  1. Environ Microbiol. 2012 Aug;14(8):2151-70 [PMID: 22309120]
  2. Trends Ecol Evol. 1997 Aug;12(8):320-5 [PMID: 21238094]
  3. Appl Environ Microbiol. 1983 Dec;46(6):1388-93 [PMID: 16346446]
  4. Mar Freshw Res. 2011 Apr;62(4):365-371 [PMID: 22319023]
  5. Nature. 2008 Jul 24;454(7203):515-8 [PMID: 18650923]
  6. Ecol Evol. 2013 Oct;3(12):4129-38 [PMID: 24324864]
  7. Microb Ecol. 2012 Feb;63(2):358-68 [PMID: 21805083]
  8. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11211-6 [PMID: 16844774]
  9. Appl Environ Microbiol. 2008 May;74(10):2940-9 [PMID: 18359836]
  10. Dis Aquat Organ. 2007 Aug 13;77(1):11-5 [PMID: 17933393]
  11. J Microbiol Methods. 2010 Apr;81(1):69-76 [PMID: 20153382]
  12. Oecologia. 2002 Nov;133(3):356-363 [PMID: 28466215]
  13. J Microbiol Methods. 2012 Apr;89(1):22-32 [PMID: 22360942]
  14. PLoS One. 2011;6(8):e23273 [PMID: 21887240]
  15. Nature. 2011 May 11;474(7350):200-3 [PMID: 21562490]
  16. Environ Microbiol. 2007 Jan;9(1):61-71 [PMID: 17227412]
  17. Trends Ecol Evol. 2010 Jun;25(6):362-71 [PMID: 20185202]
  18. J Microbiol Methods. 2010 Nov;83(2):236-43 [PMID: 20849888]
  19. Ecol Lett. 2008 Jun;11(6):533-46 [PMID: 18462196]
  20. Oecologia. 1986 Apr;69(1):86-94 [PMID: 28311689]
  21. Front Microbiol. 2012 Oct 12;3:361 [PMID: 23091469]
  22. Nature. 1999 Jun 10;399(6736):541-8 [PMID: 10376593]
  23. Proc Biol Sci. 2007 Jun 22;274(1617):1561-6 [PMID: 17439852]

Word Cloud

Created with Highcharts 10.0.0chytridsfoodzooplanktonparasiticaquaticecosystemsstabilityroleshapingwebtransferwebsnew10zoosporesmaysystemalsomycoloopParasitesecologicallysignificantvariousstructurefacilitatingenergycontrollingdiseasereviewmainlyfocusdominantparasitesexplainrolesparticularlypreyChytridsfree-livingzoosporicstageactivelysearchhostsZoosporesexcellenttermssizeshapenutritionalqualityfielddensitiescanhighranging19sporesL-1largeinediblephytoplanktonspeciesinfectednutrientswithinhostcellstransferredviapathway"mycoloop"playimportantalteringsinkingfluxesdetermininggrazingsuppressoutbreaksmodeldemonstratedcontributionproductionincreasednutrientavailabilitydependentstudiesadvancedmoleculartoolslikelydiscovergreaterchytriddiversityevidenceadditionalmycoloopslakesoceansMycoloop:chytridiomycotadaphniadiatomindirectmutualismfungitrophic

Similar Articles

Cited By