Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice.

Youko Oono, Takayuki Yazawa, Yoshihiro Kawahara, Hiroyuki Kanamori, Fuminori Kobayashi, Harumi Sasaki, Satomi Mori, Jianzhong Wu, Hirokazu Handa, Takeshi Itoh, Takashi Matsumoto
Author Information
  1. Youko Oono: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  2. Takayuki Yazawa: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan; New Project Development Division, Hitachi Government & Public Corporation System Engineering, Ltd, Koto-ku, Tokyo, Japan.
  3. Yoshihiro Kawahara: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  4. Hiroyuki Kanamori: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  5. Fuminori Kobayashi: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  6. Harumi Sasaki: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  7. Satomi Mori: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  8. Jianzhong Wu: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  9. Hirokazu Handa: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  10. Takeshi Itoh: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
  11. Takashi Matsumoto: Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.

Abstract

Plant growth is severely affected by toxic concentrations of the non-essential heavy metal cadmium (Cd). Comprehensive transcriptome analysis by RNA-Seq following cadmium exposure is required to further understand plant responses to Cd and facilitate future systems-based analyses of the underlying regulatory networks. In this study, rice plants were hydroponically treated with 50 µM Cd for 24 hours and ∼60,000 expressed transcripts, including transcripts that could not be characterized by microarray-based approaches, were evaluated. Upregulation of various ROS-scavenging enzymes, chelators and metal transporters demonstrated the appropriate expression profiles to Cd exposure. Gene Ontology enrichment analysis of the responsive transcripts indicated the upregulation of many drought stress-related genes under Cd exposure. Further investigation into the expression of drought stress marker genes such as DREB suggested that expression of genes in several drought stress signal pathways was activated under Cd exposure. Furthermore, qRT-PCR analyses of randomly selected Cd-responsive metal transporter transcripts under various metal ion stresses suggested that the expression of Cd-responsive transcripts might be easily affected by other ions. Our transcriptome analysis demonstrated a new transcriptional network linking Cd and drought stresses in rice. Considering our data and that Cd is a non-essential metal, the network underlying Cd stress responses and tolerance, which plants have developed to adapt to other stresses, could help to acclimate to Cd exposure. Our examination of this transcriptional network provides useful information for further studies of the molecular mechanisms of plant adaptation to Cd exposure and the improvement of tolerance in crop species.

References

  1. Plant Physiol. 2002 Jul;129(3):949-53 [PMID: 12114550]
  2. Phytochemistry. 2004 May;65(10):1331-42 [PMID: 15231406]
  3. J Biol Chem. 2002 Jun 21;277(25):22648-55 [PMID: 11909851]
  4. Plant J. 2001 Aug;27(4):325-33 [PMID: 11532178]
  5. Plant Cell Physiol. 2006 Jan;47(1):141-53 [PMID: 16284406]
  6. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42 [PMID: 16594069]
  7. J Biochem Mol Biol. 2006 Sep 30;39(5):595-606 [PMID: 17002881]
  8. Phytopathology. 2005 Nov;95(11):1248-55 [PMID: 18943354]
  9. FEBS Lett. 2008 Apr 2;582(7):1037-43 [PMID: 18325341]
  10. Biotechnol Lett. 2008 Dec;30(12):2191-8 [PMID: 18779926]
  11. Plant Physiol. 2003 Feb;131(2):516-24 [PMID: 12586876]
  12. Plant Physiol. 2008 Sep;148(1):455-66 [PMID: 18614714]
  13. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  14. Plant Physiol. 2010 Feb;152(2):985-99 [PMID: 19965963]
  15. Nat Rev Genet. 2011 Dec 06;13(1):59-69 [PMID: 22143240]
  16. Plant Cell. 1994 Nov;6(11):1567-82 [PMID: 7827492]
  17. Mol Genet Genomics. 2010 Sep;284(3):173-83 [PMID: 20632034]
  18. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92 [PMID: 16924117]
  19. Plant Cell. 2002 Aug;14(8):1675-90 [PMID: 12172015]
  20. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16500-5 [PMID: 20823253]
  21. Chemosphere. 2010 Feb;78(7):840-5 [PMID: 20044121]
  22. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  23. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  24. Planta. 2009 Oct;230(5):985-1002 [PMID: 19697058]
  25. Plant Physiol Biochem. 2012 Jan;50(1):79-86 [PMID: 21855360]
  26. J Plant Physiol. 2010 Feb 15;167(3):161-8 [PMID: 19853963]
  27. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8428-30 [PMID: 9671693]
  28. J Plant Physiol. 2005 Aug;162(8):912-20 [PMID: 16146317]
  29. J Exp Bot. 2005 Feb;56(412):713-23 [PMID: 15618300]
  30. J Exp Bot. 2009;60(2):391-408 [PMID: 19088338]
  31. Plant J. 2003 Jul;35(1):44-56 [PMID: 12834401]
  32. Plant Physiol. 2008 Dec;148(4):1938-52 [PMID: 18931143]
  33. Plant Physiol. 2009 Jul;150(3):1368-79 [PMID: 19429605]
  34. Plant Physiol. 2005 May;138(1):341-51 [PMID: 15834008]
  35. Annu Rev Plant Biol. 2006;57:781-803 [PMID: 16669782]
  36. Plant Cell. 2012 May;24(5):2155-67 [PMID: 22589467]
  37. Plant Mol Biol. 2009 Oct;71(3):291-305 [PMID: 19618278]
  38. Plant Mol Biol. 2012 Dec;80(6):587-608 [PMID: 22987115]
  39. Planta. 2011 Aug;234(2):331-45 [PMID: 21448719]
  40. Trends Plant Sci. 2011 Jun;16(6):300-9 [PMID: 21482172]
  41. Plant Cell Physiol. 2001 May;42(5):462-8 [PMID: 11382811]
  42. EMBO J. 1988 Aug;7(8):2279-86 [PMID: 2973410]
  43. Plant J. 2002 Nov;32(4):539-48 [PMID: 12445125]
  44. J Biol Chem. 2002 Feb 15;277(7):5360-8 [PMID: 11739388]
  45. Inorg Chem. 2006 Oct 16;45(21):8500-8 [PMID: 17029360]
  46. Plant Cell Environ. 2010 Dec;33(12):2209-30 [PMID: 20807373]
  47. Genome Res. 2010 Sep;20(9):1238-49 [PMID: 20627892]
  48. Plant Cell. 2004 Sep;16(9):2481-98 [PMID: 15319476]
  49. Plant Mol Biol. 1999 May;40(1):37-44 [PMID: 10394943]
  50. Trends Plant Sci. 2004 Nov;9(11):534-40 [PMID: 15501178]
  51. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  52. Funct Integr Genomics. 2012 Nov;12(4):635-47 [PMID: 23053198]
  53. J Exp Bot. 2006;57(15):4003-13 [PMID: 17075075]
  54. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  55. Plant J. 2006 Feb;45(3):309-19 [PMID: 16412079]
  56. Biochem J. 1984 Apr 1;219(1):1-14 [PMID: 6326753]
  57. Plant J. 2003 Feb;33(4):751-63 [PMID: 12609047]
  58. Mol Genet Genomics. 2004 Jun;271(5):511-21 [PMID: 15069639]
  59. FEBS Lett. 2003 Oct 23;553(3):370-6 [PMID: 14572653]
  60. J Exp Bot. 2006;57(8):1685-96 [PMID: 16720602]
  61. Theor Appl Genet. 2007 Jun;115(1):35-46 [PMID: 17426956]
  62. Mol Genet Genomics. 2008 Aug;280(2):139-51 [PMID: 18491141]
  63. Nature. 2012 Oct 25;490(7421):497-501 [PMID: 23034647]
  64. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  65. Plant Cell Physiol. 2002 Jul;43(7):697-705 [PMID: 12154132]
  66. Plant Cell Physiol. 2012 Jan;53(1):213-24 [PMID: 22123790]
  67. Plant Cell Physiol. 2000 Nov;41(11):1229-34 [PMID: 11092907]
  68. Plant Mol Biol. 2008 Apr;66(6):675-83 [PMID: 18236009]
  69. Plant J. 2002 Feb;29(4):417-26 [PMID: 11846875]
  70. FEBS Lett. 2000 Dec 8;486(2):103-6 [PMID: 11113447]
  71. Phytochemistry. 2004 Jul;65(13):1879-93 [PMID: 15279994]
  72. Plant Cell Environ. 2009 Apr;32(4):408-16 [PMID: 19183299]
  73. Plant Physiol Biochem. 2005 Aug;43(8):793-801 [PMID: 16198592]
  74. Trends Plant Sci. 2004 Oct;9(10):490-8 [PMID: 15465684]
  75. Plant Cell. 1999 Jun;11(6):1153-64 [PMID: 10368185]
  76. Plant Physiol. 2002 Feb;128(2):544-51 [PMID: 11842158]
  77. Plant Mol Biol. 1990 Jan;14(1):29-39 [PMID: 2151651]
  78. FEBS Lett. 2007 May 25;581(12):2263-72 [PMID: 17462635]
  79. Trends Plant Sci. 2002 Jul;7(7):309-15 [PMID: 12119168]
  80. Annu Rev Plant Biol. 2002;53:159-82 [PMID: 12221971]
  81. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:377-403 [PMID: 15012294]
  82. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20959-64 [PMID: 22160725]

MeSH Term

Cadmium
Cation Transport Proteins
Droughts
Gene Expression Profiling
Gene Expression Regulation, Plant
Genomics
Multigene Family
Oryza
Sequence Analysis, RNA
Signal Transduction
Stress, Physiological
Up-Regulation

Chemicals

Cation Transport Proteins
Cadmium