Recurrent read-through fusion transcripts in breast cancer.

Katherine E Varley, Jason Gertz, Brian S Roberts, Nicholas S Davis, Kevin M Bowling, Marie K Kirby, Amy S Nesmith, Patsy G Oliver, William E Grizzle, Andres Forero, Donald J Buchsbaum, Albert F LoBuglio, Richard M Myers
Author Information
  1. Katherine E Varley: HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.

Abstract

Read-through fusion transcripts that result from the splicing of two adjacent genes in the same coding orientation are a recently discovered type of chimeric RNA. We sought to determine if read-through fusion transcripts exist in breast cancer. We performed paired-end RNA-seq of 168 breast samples, including 28 breast cancer cell lines, 42 triple negative breast cancer primary tumors, 42 estrogen receptor positive (ER+) breast cancer primary tumors, and 56 non-malignant breast tissue samples. We analyzed the sequencing data to identify breast cancer associated read-through fusion transcripts. We discovered two recurrent read-through fusion transcripts that were identified in breast cancer cell lines, confirmed across breast cancer primary tumors, and were not detected in normal tissues (SCNN1A-TNFRSF1A and CTSD-IFITM10). Both fusion transcripts use canonical splice sites to join the last splice donor of the 5' gene to the first splice acceptor of the 3' gene, creating an in-frame fusion transcript. Western blots indicated that the fusion transcripts are translated into fusion proteins in breast cancer cells. Custom small interfering RNAs targeting the CTSD-IFITM10 fusion junction reduced expression of the fusion transcript and reduced breast cancer cell proliferation. Read-through fusion transcripts between adjacent genes with different biochemical functions represent a new type of recurrent molecular defect in breast cancer that warrant further investigation as potential biomarkers and therapeutic targets. Both breast cancer associated fusion transcripts identified in this study involve membrane proteins (SCNN1A-TNFRSF1A and CTSD-IFITM10), which raises the possibility that they could be breast cancer-specific cell surface markers.

References

  1. PLoS One. 2010 Oct 12;5(10):e13284 [PMID: 20967262]
  2. Nat Genet. 2004 Apr;36(4):331-4 [PMID: 15054488]
  3. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  4. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1886-91 [PMID: 19181860]
  5. J Am Soc Nephrol. 2000 Nov;11 Suppl 16:S129-34 [PMID: 11065344]
  6. Cancer Biomark. 2010;7(1):47-64 [PMID: 21045264]
  7. Blut. 1962 Apr;8:65-6 [PMID: 14480647]
  8. Nucleic Acids Res. 2011 Aug;39(15):e100 [PMID: 21622959]
  9. BMC Med Genomics. 2011 Oct 27;4:75 [PMID: 22032724]
  10. Blood. 2008 Sep 15;112(6):2183-9 [PMID: 18779403]
  11. Science. 2005 Oct 28;310(5748):644-8 [PMID: 16254181]
  12. Genome Res. 2012 Jan;22(1):134-41 [PMID: 22128135]
  13. BMB Rep. 2012 Mar;45(3):133-40 [PMID: 22449698]
  14. Cell Cycle. 2009 Jan 15;8(2):218-22 [PMID: 19158498]
  15. Cancer Discov. 2012 Jul;2(7):582-5 [PMID: 22787087]
  16. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12353-8 [PMID: 19592507]
  17. Nature. 2009 Dec 24;462(7276):1005-10 [PMID: 20033038]
  18. Genome Biol. 2006;7 Suppl 1:S4.1-9 [PMID: 16925838]
  19. Cancer Res. 2009 Apr 1;69(7):2734-8 [PMID: 19293179]
  20. Bioinformatics. 2011 Oct 15;27(20):2903-4 [PMID: 21840877]
  21. Nature. 1973 Jun 1;243(5405):290-3 [PMID: 4126434]
  22. Genome Res. 2012 Jul;22(7):1231-42 [PMID: 22588898]
  23. Science. 2002 May 31;296(5573):1634-5 [PMID: 12040173]
  24. Cancer Discov. 2012 Jul;2(7):598-607 [PMID: 22719019]
  25. Genome Res. 2006 Jan;16(1):30-6 [PMID: 16344562]
  26. Genome Res. 2006 Jan;16(1):37-44 [PMID: 16344564]
  27. Funct Integr Genomics. 2012 Mar;12(1):45-61 [PMID: 22231539]
  28. Cancer Cell. 2002 Nov;2(5):367-76 [PMID: 12450792]
  29. Nat Med. 2011 Nov 20;17(12):1646-51 [PMID: 22101766]
  30. Nat Rev Cancer. 2008 Jul;8(7):497-511 [PMID: 18563191]
  31. J Mol Evol. 2009 Jan;68(1):56-65 [PMID: 19089307]
  32. Nature. 2009 Mar 5;458(7234):97-101 [PMID: 19136943]
  33. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18740-4 [PMID: 19841262]
  34. BMC Med Genomics. 2011 Jan 24;4:11 [PMID: 21261984]
  35. Breast Cancer Res Treat. 2012 Jun;133(2):417-26 [PMID: 21901385]
  36. Cancer Res. 2012 Apr 15;72(8):1921-8 [PMID: 22496456]
  37. Genome Biol. 2011;12(1):R6 [PMID: 21247443]
  38. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  39. Proc Natl Acad Sci U S A. 2011 May 31;108(22):9172-7 [PMID: 21571633]
  40. BMC Genomics. 2012 Apr 26;13:155 [PMID: 22537233]
  41. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  42. Nature. 2007 Aug 2;448(7153):561-6 [PMID: 17625570]
  43. Nat Med. 1996 May;2(5):561-6 [PMID: 8616716]
  44. Nature. 2007 Aug 2;448(7153):595-9 [PMID: 17671502]
  45. Genome Biol. 2011 Aug 11;12(8):R72 [PMID: 21835007]

Grants

  1. P30 CA013148/NCI NIH HHS
  2. P50 CA089019/NCI NIH HHS
  3. P50CA089019/NCI NIH HHS

MeSH Term

Alternative Splicing
Base Sequence
Breast Neoplasms
Cell Line, Tumor
Cell Proliferation
Female
Gene Expression
Gene Expression Profiling
Genetic Loci
Humans
Molecular Sequence Data
Oncogene Proteins, Fusion
Transcription, Genetic

Chemicals

Oncogene Proteins, Fusion