Improved Plasmids for Fluorescent Protein Tagging of Microtubules in Saccharomyces cerevisiae.

Steven M Markus, Safia Omer, Kaitlyn Baranowski, Wei-Lih Lee
Author Information
  1. Steven M Markus: Biology Department, University of Massachusetts Amherst, 221 Morrill South, 611 North Pleasant Street, Amherst, MA 01003.
  2. Kaitlyn Baranowski: Biology Department, University of Massachusetts Amherst, 221 Morrill South, 611 North Pleasant Street, Amherst, MA 01003.
  3. Wei-Lih Lee: Biology Department, University of Massachusetts Amherst, 221 Morrill South, 611 North Pleasant Street, Amherst, MA 01003.

Abstract

The ability to fluorescently label microtubules in live cells has enabled numerous studies of motile and mitotic processes. Such studies are particularly useful in budding yeast owing to the ease with which they can be genetically manipulated and imaged by live cell fluorescence microscopy. Because of problems associated with fusing genes encoding fluorescent proteins (FPs) to the native α-tubulin (TUB1) gene, the FP-Tub1 fusion is generally integrated into the genome such that the endogenous TUB1 locus is left intact. Although such modifications have no apparent consequences on cell viability, it is unknown if these genome-integrated FP-tubulin fusions negatively affect microtubule functions. Thus, a simple, economical and highly sensitive assay of microtubule function is required. Furthermore, the current plasmids available for generation of FP-Tub1 fusions have not kept pace with the development of improved FPs. Here, we have developed a simple and sensitive assay of microtubule function that is sufficient to identify microtubule defects that were not apparent by fluorescence microscopy or cell growth assays. Using results obtained from this assay, we have engineered a new family of 30 FP-Tub1 plasmids that use various improved FPs and numerous selectable markers that upon genome integration have no apparent defect on microtubule function.

Keywords

References

  1. Yeast. 2008 Sep;25(9):651-9 [PMID: 18727145]
  2. J Cell Biol. 2001 Feb 5;152(3):451-69 [PMID: 11157974]
  3. Mol Biol Cell. 2007 Apr;18(4):1187-202 [PMID: 17251549]
  4. J Cell Biol. 1999 Mar 8;144(5):977-87 [PMID: 10085295]
  5. Mol Biol Cell. 1997 Dec;8(12):2677-91 [PMID: 9398684]
  6. Cytoskeleton (Hoboken). 2011 Mar;68(3):157-74 [PMID: 21294277]
  7. Nat Cell Biol. 2000 Jan;2(1):36-41 [PMID: 10620805]
  8. J Cell Biol. 2007 Jun 18;177(6):981-93 [PMID: 17562791]
  9. J Cell Biol. 2013 Feb 4;200(3):271-86 [PMID: 23358243]
  10. Cell. 2003 Nov 14;115(4):475-87 [PMID: 14622601]
  11. Yeast. 2012 Mar;29(3-4):119-36 [PMID: 22473760]
  12. Science. 1997 Jul 25;277(5325):574-8 [PMID: 9228009]
  13. Genes Dev. 2013 Feb 1;27(3):335-49 [PMID: 23388829]
  14. J Cell Biol. 2010 Nov 15;191(4):795-808 [PMID: 21079246]
  15. Yeast. 2004 Jun;21(8):661-70 [PMID: 15197731]
  16. Eukaryot Cell. 2007 May;6(5):797-807 [PMID: 17416900]
  17. Mol Biol Cell. 2001 Sep;12(9):2870-80 [PMID: 11553724]
  18. Yeast. 1998 Jul;14(10):953-61 [PMID: 9717241]
  19. Mol Biol Cell. 2009 Jun;20(12):2820-30 [PMID: 19386762]
  20. Nat Methods. 2009 Feb;6(2):131-3 [PMID: 19169260]
  21. Yeast. 1999 Jul;15(10B):963-72 [PMID: 10407276]
  22. J Cell Biol. 2010 Nov 1;191(3):493-503 [PMID: 21041444]
  23. Nat Biotechnol. 2002 Jan;20(1):87-90 [PMID: 11753368]
  24. Dev Cell. 2009 Aug;17(2):244-56 [PMID: 19686685]
  25. Curr Biol. 2009 Feb 10;19(3):196-205 [PMID: 19185494]
  26. J Cell Biol. 1990 Dec;111(6 Pt 1):2573-86 [PMID: 2277073]
  27. J Cell Biol. 1997 Aug 11;138(3):629-41 [PMID: 9245791]
  28. Curr Biol. 2014 Aug 18;24(16):1826-35 [PMID: 25088560]
  29. Nat Methods. 2012 Oct;9(10):1005-12 [PMID: 22961245]
  30. Mol Biol Cell. 2006 Jan;17(1):178-91 [PMID: 16236795]
  31. Yeast. 1999 Oct;15(14):1541-53 [PMID: 10514571]
  32. PLoS One. 2013 Jul 02;8(7):e67902 [PMID: 23844123]
  33. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3886-91 [PMID: 8632984]
  34. J Cell Biol. 2005 Jan 17;168(2):201-7 [PMID: 15642746]
  35. Trends Biochem Sci. 2003 Feb;28(2):91-8 [PMID: 12575997]
  36. Nat Commun. 2012 Mar 20;3:751 [PMID: 22434194]
  37. J Cell Biol. 2001 Jan 8;152(1):27-40 [PMID: 11149918]
  38. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]
  39. Mol Biol Cell. 2002 Aug;13(8):2919-32 [PMID: 12181356]
  40. Methods Cell Biol. 2013;115:355-74 [PMID: 23973083]

Grants

  1. R01 GM076094/NIGMS NIH HHS
  2. T32 GM108556/NIGMS NIH HHS
  3. 1R01GM076094/NIGMS NIH HHS

MeSH Term

Genetic Vectors
Luminescent Proteins
Microtubules
Plasmids
Protein Engineering
Protein Transport
Recombinant Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins

Chemicals

Luminescent Proteins
Recombinant Proteins
Saccharomyces cerevisiae Proteins
Tub1 protein, S cerevisiae

Word Cloud

Created with Highcharts 10.0.0microtubulecellFPsFP-Tub1apparentassayfunctionmicrotubuleslivenumerousstudiesbuddingyeastfluorescencemicroscopyfluorescentproteinsTUB1genomefusionssimplesensitiveplasmidsimprovedabilityfluorescentlylabelcellsenabledmotilemitoticprocessesparticularlyusefulowingeasecangeneticallymanipulatedimagedproblemsassociatedfusinggenesencodingnativeα-tubulingenefusiongenerallyintegratedendogenouslocusleftintactAlthoughmodificationsconsequencesviabilityunknowngenome-integratedFP-tubulinnegativelyaffectfunctionsThuseconomicalhighlyrequiredFurthermorecurrentavailablegenerationkeptpacedevelopmentdevelopedsufficientidentifydefectsgrowthassaysUsingresultsobtainedengineerednewfamily30usevariousselectablemarkersuponintegrationdefectImprovedPlasmidsFluorescentProteinTaggingMicrotubulesSaccharomycescerevisiaeBik1Bim1Tub1tubulin

Similar Articles

Cited By