Dual-Energy CT: What the Neuroradiologist Should Know.

Alida A Postma, Marco Das, Annika A R Stadler, Joachim E Wildberger
Author Information
  1. Alida A Postma: Department of Radiology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
  2. Marco Das: Department of Radiology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
  3. Annika A R Stadler: Department of Radiology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
  4. Joachim E Wildberger: Department of Radiology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.

Abstract

Because of the different attenuations of tissues at different energy levels, dual-energy CT offers tissue differentiation and characterization, reduction of artifacts, and remodeling of contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR), hereby creating new opportunities and insights in CT imaging. The applications for dual-energy imaging in neuroradiology are various and still expanding. Automated bone removal is used in CT angiography and CT venography of the intracranial vessels. Monoenergetic reconstructions can be used in patients with or without metal implants in the brain and spine to reduce artifacts, improve CNR and SNR, or to improve iodine conspicuity. Differentiation of iodine and hemorrhage is used in high-density lesions, after intra-arterial recanalization in stroke patients or after administration of contrast media. Detection of underlying (vascular and non-vascular) pathology and spot sign can be used in patients presenting with (acute) intracranial hemorrhage.

Keywords

References

  1. Invest Radiol. 2012 Feb;47(2):142-7 [PMID: 22104960]
  2. Neuroradiology. 2014 Sep;56(9):737-44 [PMID: 24925217]
  3. Oral Oncol. 2014 Mar;50(3):221-7 [PMID: 24373911]
  4. Neurosurg Focus. 2012 Apr;32(4):E2 [PMID: 22463112]
  5. AJNR Am J Neuroradiol. 2008 Jan;29(1):134-9 [PMID: 17928381]
  6. Eur Radiol. 2014 Mar;24(3):574-80 [PMID: 24081649]
  7. Invest Radiol. 2009 May;44(5):293-7 [PMID: 19550378]
  8. Eur Radiol. 2007 Jun;17(6):1510-7 [PMID: 17151859]
  9. Radiology. 2010 Oct;257(1):205-11 [PMID: 20679449]
  10. AJNR Am J Neuroradiol. 2012 Jun;33(6):999-1006 [PMID: 22576888]
  11. Acta Radiol. 2014 Oct;55(8):1015-23 [PMID: 24215905]
  12. Clin Neuroradiol. 2010 Dec;20(4):231-5 [PMID: 21052614]
  13. AJR Am J Roentgenol. 2010 Jun;194(6):1590-5 [PMID: 20489101]
  14. Eur J Radiol. 2013 Oct;82(10):e574-81 [PMID: 23763858]
  15. Eur Radiol. 2012 Nov;22(11):2357-64 [PMID: 22645043]
  16. Digitale Bilddiagn. 1987 Sep;7(3):95-103 [PMID: 3315395]
  17. AJR Am J Roentgenol. 2012 Nov;199(5 Suppl):S9-S15 [PMID: 23097173]
  18. Neuroradiology. 2014 Dec;56(12):1039-45 [PMID: 25228452]
  19. Neuroradiology. 2014 Apr;56(4):291-5 [PMID: 24510167]
  20. Stroke. 2014 Mar;45(3):734-9 [PMID: 24481974]
  21. AJR Am J Roentgenol. 2010 Jan;194(1):23-30 [PMID: 20028901]
  22. J Comput Assist Tomogr. 2013 Nov-Dec;37(6):944-7 [PMID: 24270117]
  23. AJNR Am J Neuroradiol. 2012 Jun;33(6):1088-94 [PMID: 22268092]
  24. J Comput Assist Tomogr. 1977 Oct;1(4):487-93 [PMID: 615229]
  25. AJNR Am J Neuroradiol. 2011 Dec;32(11):1994-9 [PMID: 21903909]
  26. Eur Radiol. 2010 Feb;20(2):469-76 [PMID: 19697041]
  27. Radiographics. 2010 Jul-Aug;30(4):1037-55 [PMID: 20631367]
  28. J Korean Neurosurg Soc. 2010 Nov;48(5):399-405 [PMID: 21286475]
  29. Eur Radiol. 2006 Feb;16(2):256-68 [PMID: 16341833]
  30. PLoS One. 2014 Mar 03;9(3):e90431 [PMID: 24594897]
  31. Stroke. 2008 Apr;39(4):1177-83 [PMID: 18292380]
  32. Stroke. 2011 Aug;42(8):2170-4 [PMID: 21737802]
  33. Eur Radiol. 2014 Apr;24(4):834-40 [PMID: 24258277]
  34. Invest Radiol. 2012 May;47(5):306-11 [PMID: 21577123]
  35. Stroke. 2014 Jan;45(1):277-80 [PMID: 24178918]
  36. J Comput Assist Tomogr. 2010 Nov-Dec;34(6):816-24 [PMID: 21084894]
  37. AJR Am J Roentgenol. 2012 Nov;199(5 Suppl):S3-8 [PMID: 23097165]
  38. Radiology. 2013 Jan;266(1):318-25 [PMID: 23074259]
  39. Stroke. 1999 Nov;30(11):2280-4 [PMID: 10548658]
  40. Neuroimaging Clin N Am. 2014 May;24(2):349-64 [PMID: 24792613]
  41. AJR Am J Roentgenol. 2012 Nov;199(5 Suppl):S26-33 [PMID: 23097164]
  42. Korean J Radiol. 2006 Oct-Dec;7(4):221-8 [PMID: 17143024]
  43. Stroke. 2013 Oct;44(10):2883-90 [PMID: 23920016]
  44. Stroke. 2001 Sep;32(9):2042-8 [PMID: 11546895]
  45. Eur Radiol. 2008 May;18(5):974-82 [PMID: 18224325]
  46. Cerebrovasc Dis. 2014;37(4):268-76 [PMID: 24777174]
  47. Digitale Bilddiagn. 1987 Jun;7(2):66-72 [PMID: 3621809]
  48. Rofo. 2014 Jul;186(7):670-4 [PMID: 24497091]
  49. AJR Am J Roentgenol. 2012 Nov;199(5 Suppl):S34-9 [PMID: 23097166]
  50. Eur J Radiol. 2014 Feb;83(2):322-8 [PMID: 24361061]
  51. Cardiovasc Intervent Radiol. 2014 Oct;37(5):1171-8 [PMID: 24310826]
  52. AJNR Am J Neuroradiol. 2012 Jan;33(1):5-11 [PMID: 22158930]
  53. Clin Radiol. 2010 Jun;65(6):440-6 [PMID: 20451010]
  54. Invest Radiol. 2005 Apr;40(4):229-34 [PMID: 15770141]
  55. Eur Radiol. 2009 Apr;19(4):1019-24 [PMID: 19002466]
  56. Chin Med J (Engl). 2010 May 5;123(9):1139-44 [PMID: 20529552]
  57. Eur Radiol. 2009 Oct;19(10):2518-22 [PMID: 19585123]
  58. Eur J Radiol. 2013 Aug;82(8):e360-6 [PMID: 23518146]
  59. J Neurointerv Surg. 2015 Aug;7(8):596-602 [PMID: 24951287]
  60. Invest Radiol. 2014 Sep;49(9):586-92 [PMID: 24710203]
  61. J Neurol. 2012 May;259(5):936-43 [PMID: 22015965]
  62. J Comput Assist Tomogr. 2013 Sep-Oct;37(5):666-72 [PMID: 24045238]
  63. Clin Neurol Neurosurg. 2009 Nov;111(9):717-23 [PMID: 19560262]
  64. Invest Radiol. 2009 Jan;44(1):38-43 [PMID: 18836384]
  65. Cerebrovasc Dis. 2010 Feb;29(3):217-20 [PMID: 20029193]
  66. Acad Radiol. 2014 Apr;21(4):431-6 [PMID: 24594412]
  67. Ann Acad Med Singap. 2009 Sep;38(9):817-20 [PMID: 19816642]
  68. Eur J Radiol. 2011 Nov;80(2):612-9 [PMID: 21376494]
  69. AJR Am J Roentgenol. 2013 Oct;201(4):878-83 [PMID: 24059379]
  70. AJNR Am J Neuroradiol. 2012 May;33(5):865-72 [PMID: 22241388]

Word Cloud

Created with Highcharts 10.0.0CTusedpatientsdifferentdual-energyartifactsratioCNRSNRimagingremovalintracranialcanimproveiodinehemorrhagerecanalizationattenuationstissuesenergylevelsofferstissuedifferentiationcharacterizationreductionremodelingcontrast-to-noisesignal-to-noiseherebycreatingnewopportunitiesinsightsapplicationsneuroradiologyvariousstillexpandingAutomatedboneangiographyvenographyvesselsMonoenergeticreconstructionswithoutmetalimplantsbrainspinereduceconspicuityDifferentiationhigh-densitylesionsintra-arterialstrokeadministrationcontrastmediaDetectionunderlyingvascularnon-vascularpathologyspotsignpresentingacuteDual-EnergyCT:NeuroradiologistKnowBoneCircleWillisDual-energyIntra-arterialIodineoverlayVirtualnon-contrast

Similar Articles

Cited By