Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis.

Yonghao Cao, Brittany A Goods, Khadir Raddassi, Gerald T Nepom, William W Kwok, J Christopher Love, David A Hafler
Author Information
  1. Yonghao Cao: Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  2. Brittany A Goods: Department of Biological Engineering, Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
  3. Khadir Raddassi: Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  4. Gerald T Nepom: Benaroya Research Institute, Virginia Mason Research Center, Seattle, WA 98101, USA.
  5. William W Kwok: Benaroya Research Institute, Virginia Mason Research Center, Seattle, WA 98101, USA. Department of Medicine, University of Washington, Seattle, WA 98101, USA.
  6. J Christopher Love: Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  7. David A Hafler: Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. david.hafler@yale.edu.

Abstract

Myelin-reactive T cells have been identified in patients with multiple sclerosis (MS) and healthy subjects with comparable frequencies, but the contribution of these autoreactive T cells to disease pathology remains unknown. A total of 13,324 T cell libraries generated from blood of 23 patients and 22 healthy controls were interrogated for reactivity to myelin antigens. Libraries derived from CCR6(+) myelin-reactive T cells from patients with MS exhibited significantly enhanced production of interferon-γ (IFN-γ), interleukin-17 (IL-17), and granulocyte-macrophage colony-stimulating factor (GM-CSF) compared to healthy controls. Single-cell clones isolated by major histocompatibility complex/peptide tetramers from CCR6(+) T cell libraries also secreted more proinflammatory cytokines, whereas clones isolated from controls secreted more IL-10. The transcriptomes of myelin-specific CCR6(+) T cells from patients with MS were distinct from those derived from healthy controls and, notably, were enriched in T helper cell 17 (TH17)-induced experimental autoimmune encephalitis gene signatures, and gene signatures derived from TH17 cells isolated other human autoimmune diseases. These data, although not causal, imply that functional differences between antigen-specific T cells from MS and healthy controls are fundamental to disease development and support the notion that IL-10 production from myelin-reactive T cells may act to limit disease progression or even pathogenesis.

References

  1. J Immunol. 2011 Jul 15;187(2):1039-46 [PMID: 21653833]
  2. Sci Transl Med. 2014 Jun 18;6(241):241ra80 [PMID: 24944195]
  3. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  4. Nat Med. 2005 Mar;11(3):335-9 [PMID: 15735651]
  5. Nat Rev Genet. 2013 Sep;14(9):661-73 [PMID: 23917628]
  6. Nat Rev Immunol. 2009 Jun;9(6):393-407 [PMID: 19444307]
  7. Immunity. 2011 Aug 26;35(2):299-311 [PMID: 21867929]
  8. J Exp Med. 2004 Jul 5;200(1):79-87 [PMID: 15238607]
  9. PLoS One. 2014;9(1):e86643 [PMID: 24475162]
  10. Nat Rev Immunol. 2010 Mar;10(3):170-81 [PMID: 20154735]
  11. J Exp Med. 2010 Mar 15;207(3):565-77 [PMID: 20194631]
  12. Sci Transl Med. 2012 Sep 26;4(153):153ra131 [PMID: 23019656]
  13. Brain. 2009 Dec;132(Pt 12):3329-41 [PMID: 19933767]
  14. Nature. 2010 Oct 21;467(7318):967-71 [PMID: 20962846]
  15. Nat Immunol. 2012 Oct;13(10):991-9 [PMID: 22961052]
  16. Nat Immunol. 2009 Aug;10(8):864-71 [PMID: 19578368]
  17. Nature. 1990 Jul 12;346(6280):183-7 [PMID: 1694970]
  18. Nat Rev Immunol. 2007 Aug;7(8):585-98 [PMID: 17653126]
  19. Diabetes. 2010 Feb;59(2):433-9 [PMID: 19934002]
  20. J Exp Med. 2009 Jul 6;206(7):1525-34 [PMID: 19564353]
  21. J Exp Med. 1933 Jun 30;58(1):39-53 [PMID: 19870180]
  22. J Immunol. 1995 Jul 15;155(2):982-92 [PMID: 7541828]
  23. Brain. 2006 Aug;129(Pt 8):1953-71 [PMID: 16632554]
  24. Cell Res. 2014 Dec;24(12):1387-402 [PMID: 25412660]
  25. J Exp Med. 1991 Jan 1;173(1):19-24 [PMID: 1702137]
  26. Immunity. 2011 Dec 23;35(6):986-96 [PMID: 22177922]
  27. Nat Immunol. 2011 Jun;12(6):568-75 [PMID: 21516111]
  28. Nat Immunol. 2011 Jun;12(6):560-7 [PMID: 21516112]
  29. Cell. 2012 Oct 12;151(2):289-303 [PMID: 23021777]
  30. Immunol Rev. 1998 Aug;164:93-100 [PMID: 9795767]
  31. J Clin Invest. 2012 Apr;122(4):1180-8 [PMID: 22466660]
  32. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18680-5 [PMID: 19846760]
  33. Immunity. 2011 Apr 22;34(4):554-65 [PMID: 21511184]
  34. J Immunol. 2004 Mar 15;172(6):3893-904 [PMID: 15004197]
  35. J Clin Invest. 2014 Jun;124(6):2513-22 [PMID: 24812667]
  36. J Exp Med. 2014 Jan 13;211(1):89-104 [PMID: 24395888]
  37. J Neuroimmunol. 2013 Apr 15;257(1-2):53-8 [PMID: 23477966]
  38. J Clin Invest. 2006 Dec;116(12):3252-7 [PMID: 17099776]
  39. Immunol Cell Biol. 2014 Jan;92(1):64-71 [PMID: 24145858]
  40. Nature. 2011 Aug 11;476(7359):214-9 [PMID: 21833088]
  41. Mediators Inflamm. 2014;2014:659206 [PMID: 24639600]
  42. N Engl J Med. 2007 Aug 30;357(9):851-62 [PMID: 17660530]
  43. N Engl J Med. 2003 Jan 2;348(1):68-72 [PMID: 12510047]
  44. Nature. 2012 Apr 26;484(7395):514-8 [PMID: 22466287]
  45. Nat Immunol. 2009 May;10(5):514-23 [PMID: 19305396]
  46. Lancet Neurol. 2012 Apr;11(4):349-60 [PMID: 22441196]
  47. Nature. 2015 Feb 19;518(7539):337-43 [PMID: 25363779]
  48. Nat Immunol. 2007 Sep;8(9):913-9 [PMID: 17712344]
  49. Novartis Found Symp. 2008;292:174-83; discussion 183-6, 202-3 [PMID: 19203099]
  50. J Immunol. 2009 Mar 1;182(5):3121-30 [PMID: 19234209]

Grants

  1. U19 AI070352/NIAID NIH HHS
  2. P30 CA014051/NCI NIH HHS
  3. P30-CA14051/NCI NIH HHS
  4. P01 AI039671/NIAID NIH HHS
  5. P01 AI045757/NIAID NIH HHS
  6. U19 AI046130/NIAID NIH HHS
  7. P01 AI073748/NIAID NIH HHS

MeSH Term

Adult
Case-Control Studies
Female
Gene Expression Profiling
Humans
Inflammation
Male
Middle Aged
Multiple Sclerosis
Myelin Sheath
T-Lymphocytes