Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.

Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck, John J Trombetta, David A Weitz, Joshua R Sanes, Alex K Shalek, Aviv Regev, Steven A McCarroll
Author Information
  1. Evan Z Macosko: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Electronic address: emacosko@genetics.med.harvard.edu.
  2. Anindita Basu: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  3. Rahul Satija: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA.
  4. James Nemesh: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
  5. Karthik Shekhar: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
  6. Melissa Goldman: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
  7. Itay Tirosh: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
  8. Allison R Bialas: The Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA.
  9. Nolan Kamitaki: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
  10. Emily M Martersteck: Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  11. John J Trombetta: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
  12. David A Weitz: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
  13. Joshua R Sanes: Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  14. Alex K Shalek: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science and Department of Chemistry, MIT, Cambridge, MA 02139, USA.
  15. Aviv Regev: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
  16. Steven A McCarroll: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Electronic address: mccarroll@genetics.med.harvard.edu.

Abstract

Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together. Drop-seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts' cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. VIDEO ABSTRACT.

Associated Data

GEO | GSE63473

References

  1. Neuron. 2012 Oct 18;76(2):266-80 [PMID: 23083731]
  2. Cell Rep. 2012 Sep 27;2(3):666-73 [PMID: 22939981]
  3. Nature. 2014 Jun 19;510(7505):363-9 [PMID: 24919153]
  4. Nat Biotechnol. 2013 Jun;31(6):545-52 [PMID: 23685480]
  5. Vis Neurosci. 2010 Mar;27(1-2):19-42 [PMID: 20392300]
  6. Nat Neurosci. 2011 Jul 10;14(8):965-72 [PMID: 21743471]
  7. Phys Rev Lett. 2001 Apr 30;86(18):4163-6 [PMID: 11328121]
  8. Mol Biol Cell. 2002 Jun;13(6):1977-2000 [PMID: 12058064]
  9. Biotechniques. 2001 Apr;30(4):892-7 [PMID: 11314272]
  10. Science. 2014 Feb 14;343(6172):776-9 [PMID: 24531970]
  11. J Comp Neurol. 2004 Jan 6;468(2):251-63 [PMID: 14648683]
  12. J Neurosci. 1998 Nov 1;18(21):8936-46 [PMID: 9786999]
  13. J Mol Biol. 2005 Aug 19;351(3):453-69 [PMID: 16023139]
  14. Phys Rev Lett. 2007 Aug 31;99(9):094502 [PMID: 17931011]
  15. Nat Rev Neurosci. 2008 Jul;9(7):557-68 [PMID: 18568015]
  16. Nat Methods. 2011 Nov 20;9(1):72-4 [PMID: 22101854]
  17. Science. 1968 Aug 9;161(3841):529-40 [PMID: 4874239]
  18. J R Soc Interface. 2014 Oct 6;11(99): [PMID: 25142523]
  19. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):202-7 [PMID: 24344260]
  20. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9236-41 [PMID: 10430926]
  21. Nat Methods. 2013 Nov;10(11):1096-8 [PMID: 24056875]
  22. Anal Chem. 2008 Mar 15;80(6):1854-8 [PMID: 18278951]
  23. Bioinformatics. 2013 Feb 15;29(4):461-7 [PMID: 23267174]
  24. Nat Methods. 2013 Nov;10(11):1093-5 [PMID: 24056876]
  25. J Neurosci. 2014 Apr 16;34(16):5447-53 [PMID: 24741035]
  26. Nat Neurosci. 2012 Jan 22;15(3):487-95, S1-2 [PMID: 22267162]
  27. Bioinformatics. 2015 Feb 15;31(4):545-54 [PMID: 25336500]
  28. J Mol Biol. 1968 Feb 14;31(3):349-70 [PMID: 5637197]
  29. Neuron. 2010 Apr 15;66(1):15-36 [PMID: 20399726]
  30. Nature. 2013 Jun 13;498(7453):236-40 [PMID: 23685454]
  31. J Neurosci. 2001 Jan 1;21(1):230-9 [PMID: 11150340]
  32. FASEB J. 2005 Jan;19(1):29-35 [PMID: 15629892]
  33. Annu Rev Neurosci. 2015 Jul 8;38:221-46 [PMID: 25897874]
  34. Cell. 2015 May 21;161(5):1187-1201 [PMID: 26000487]
  35. Anal Chem. 2011 Nov 15;83(22):8604-10 [PMID: 22035192]
  36. Neuron. 2008 Mar 13;57(5):634-60 [PMID: 18341986]
  37. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  38. Nat Methods. 2014 Feb;11(2):163-6 [PMID: 24363023]
  39. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Grants

  1. /Howard Hughes Medical Institute
  2. T32 AI074549/NIAID NIH HHS
  3. R25 MH094612/NIMH NIH HHS
  4. P50 HG006193/NHGRI NIH HHS
  5. P30 DK043351/NIDDK NIH HHS
  6. F32 HD075541/NICHD NIH HHS
  7. U01 MH105960/NIMH NIH HHS
  8. U01MH105960/NIMH NIH HHS
  9. R25MH094612/NIMH NIH HHS

MeSH Term

Animals
Gene Expression Profiling
Genome-Wide Association Study
High-Throughput Nucleotide Sequencing
Mice
Microfluidic Analytical Techniques
Retina
Sequence Analysis, RNA
Single-Cell Analysis