A survey of human brain transcriptome diversity at the single cell level.

Spyros Darmanis, Steven A Sloan, Ye Zhang, Martin Enge, Christine Caneda, Lawrence M Shuer, Melanie G Hayden Gephart, Ben A Barres, Stephen R Quake
Author Information
  1. Spyros Darmanis: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305.
  2. Steven A Sloan: Neurobiology, and.
  3. Ye Zhang: Neurobiology, and.
  4. Martin Enge: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305.
  5. Christine Caneda: Neurobiology, and.
  6. Lawrence M Shuer: Neurosurgery, and.
  7. Melanie G Hayden Gephart: Neurosurgery, and.
  8. Ben A Barres: Neurobiology, and quake@stanford.edu barres@stanford.edu.
  9. Stephen R Quake: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 quake@stanford.edu barres@stanford.edu.

Abstract

The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.

Keywords

Associated Data

GEO | GSE67835

References

  1. Science. 2014 Jan 24;343(6169):422-4 [PMID: 24458643]
  2. Nat Protoc. 2015 Mar;10(3):442-58 [PMID: 25675209]
  3. Nat Biotechnol. 2014 Oct;32(10):1053-8 [PMID: 25086649]
  4. J Comp Neurol. 1991 Jun 15;308(3):381-96 [PMID: 1865007]
  5. J Neurosci. 2006 Feb 1;26(5):1624-34 [PMID: 16452686]
  6. Cell. 2012 Apr 13;149(2):483-96 [PMID: 22500809]
  7. Neuron. 2011 Sep 8;71(5):820-32 [PMID: 21903076]
  8. Nat Methods. 2005 Sep;2(9):663-5 [PMID: 16118636]
  9. Nat Methods. 2014 Feb;11(2):163-6 [PMID: 24363023]
  10. Dev Neurobiol. 2011 Jan 1;71(1):45-61 [PMID: 21154909]
  11. Nat Methods. 2013 Sep;10(9):857-60 [PMID: 23852452]
  12. J Neurosci. 2014 Sep 3;34(36):11929-47 [PMID: 25186741]
  13. Science. 2002 Aug 2;297(5582):836-40 [PMID: 12161654]
  14. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6828-33 [PMID: 17420446]
  15. Neuron. 1998 Sep;21(3):505-20 [PMID: 9768838]
  16. Front Cell Neurosci. 2013 Nov 21;7:221 [PMID: 24312011]
  17. J Neurosci. 2012 Jun 6;32(23):7819-31 [PMID: 22674258]
  18. Mol Cell Neurosci. 2013 Jan;52:117-27 [PMID: 23147111]
  19. Nature. 2014 May 15;509(7500):371-5 [PMID: 24739965]
  20. Neuron. 2009 Oct 15;64(1):40-5 [PMID: 19840547]
  21. J Neurosci. 2008 Jan 2;28(1):264-78 [PMID: 18171944]
  22. Immunol Rev. 2006 Oct;213:48-65 [PMID: 16972896]
  23. Science. 2015 Mar 6;347(6226):1138-42 [PMID: 25700174]
  24. J Neurosci. 1998 Jun 15;18(12):4627-36 [PMID: 9614237]
  25. Front Neuroanat. 2014 Oct 13;8:114 [PMID: 25352786]
  26. Neuron. 2009 Aug 27;63(4):466-81 [PMID: 19709629]
  27. Neuroscience. 2001;108(4):587-600 [PMID: 11738496]
  28. Development. 2014 Aug;141(15):3093-101 [PMID: 25053437]

Grants

  1. F30MH106261/NIMH NIH HHS
  2. R01MH099555/NIMH NIH HHS
  3. R01NS081703/NINDS NIH HHS
  4. U01 HL099999/NHLBI NIH HHS
  5. R00 NS089780/NINDS NIH HHS
  6. K99 NS089780/NINDS NIH HHS
  7. U01-HL099999/NHLBI NIH HHS
  8. T32GM007365/NIGMS NIH HHS
  9. /Howard Hughes Medical Institute
  10. R01 MH099555/NIMH NIH HHS
  11. K99NS089780/NINDS NIH HHS
  12. U01-HL099995/NHLBI NIH HHS
  13. R01 NS081703/NINDS NIH HHS
  14. T32 GM007365/NIGMS NIH HHS
  15. U01 HL099995/NHLBI NIH HHS
  16. F30 MH106261/NIMH NIH HHS
  17. R01 CA216054/NCI NIH HHS

MeSH Term

Adult
Brain
HLA Antigens
Humans
Neurons
Sequence Analysis, RNA
Single-Cell Analysis
Transcriptome

Chemicals

HLA Antigens