Striking differences in estimates of infant adiposity by new and old DXA software, PEAPOD and skin-folds at 2 weeks and 1 year of life.

L A Barbour, T L Hernandez, R M Reynolds, M S Reece, C Chartier-Logan, M K Anderson, T Kelly, J E Friedman, R E Van Pelt
Author Information
  1. L A Barbour: Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  2. T L Hernandez: Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  3. R M Reynolds: Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  4. M S Reece: Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  5. C Chartier-Logan: Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  6. M K Anderson: Department Medicine, Division of Geriatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  7. T Kelly: Hologic, Inc, Bedford, MA, USA.
  8. J E Friedman: Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  9. R E Van Pelt: Department Medicine, Division of Geriatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Abstract

BACKGROUND: Infant adiposity better predicts childhood obesity/metabolic risk than weight, but technical challenges fuel controversy over the accuracy of adiposity estimates.
OBJECTIVE: We prospectively measured adiposity (%fat) in term newborns (NB) at 2 weeks (n = 41) and 1 year (n = 30).
METHODS: %fat was measured by dual X-ray absorptiometry (DXA), PEAPOD and skin-folds (SF). DXAs were analyzed using Hologic Apex software 3.2(DXAv1) and a new version 5.5.2(DXAv2).
RESULTS: NB %fat by DXAv2 was 55% higher than DXAv1 (14.2% vs. 9.1%), 45% higher than SF (9.8%), and 36% higher than PEAPOD (10.4%). Among NB, Pearson correlations were 0.73-0.89, but agreement (intra-class correlations) poor between DXAv2 and DXAv1 (0.527), SF (0.354) and PEAPOD (0.618). At 1 year, %fat by DXAv2 was 51% higher than DXAv1 (33.6% vs. 22.4%), and twice as high compared with SF (14.6%). Agreement was poor between DXAv2 and DXAv1 (0.204), and SF (0.038). The absolute increase in %fat from 2 weeks to 1 year was 19.7% (DXAv2), 13.6% (DXAv1) and only 4.8% by SF.
CONCLUSION: Analysis of the same DXA scans using new software yielded considerably higher adiposity estimates at birth and 1 year compared with the previous version. Using different modalities to assess body composition longitudinally is problematic. Standardization is gravely needed to determine how early life exposures affect childhood obesity/metabolic risk.

Keywords

References

  1. Diabetes Care. 2013 Jan;36(1):56-62 [PMID: 22891256]
  2. J Acad Nutr Diet. 2012 Jul;112(7):991-5 [PMID: 22889630]
  3. Am J Clin Nutr. 2002 Nov;76(5):1096-100 [PMID: 12399284]
  4. Am J Clin Nutr. 2007 Jan;85(1):90-5 [PMID: 17209182]
  5. Obesity (Silver Spring). 2008 Feb;16(2):457-62 [PMID: 18239659]
  6. Pediatr Obes. 2012 Oct;7(5):e42-61 [PMID: 22911903]
  7. Am J Clin Nutr. 2009 Nov;90(5):1303-13 [PMID: 19759171]
  8. Curr Opin Clin Nutr Metab Care. 2010 May;13(3):294-9 [PMID: 20179588]
  9. Eur J Clin Nutr. 2014 Jun;68(6):664-70 [PMID: 24473457]
  10. J Pediatr. 2013 May;162(5):930-6.e1 [PMID: 23260099]
  11. Pediatr Res. 2000 May;47(5):578-85 [PMID: 10813580]
  12. Pediatrics. 2004 Jul;114(1):e29-36 [PMID: 15231970]
  13. Pediatr Res. 2013 Nov;74(5):486-93 [PMID: 23999072]
  14. Hum Biol. 1988 Oct;60(5):709-23 [PMID: 3224965]
  15. Obesity (Silver Spring). 2012 Nov;20(11):2302-6 [PMID: 22522885]
  16. Am J Hum Biol. 2014 May-Jun;26(3):291-304 [PMID: 24424686]
  17. Am J Clin Nutr. 2003 Feb;77(2):364-70 [PMID: 12540395]
  18. Obesity (Silver Spring). 2013 Jan;21(1):144-8 [PMID: 23505179]
  19. Curr Opin Endocrinol Diabetes Obes. 2014 Aug;21(4):257-63 [PMID: 24937039]
  20. Diabetes Care. 2012 Apr;35(4):780-6 [PMID: 22357187]
  21. Am J Clin Nutr. 2004 Apr;79(4):653-60 [PMID: 15051611]
  22. N Engl J Med. 2014 Apr 24;370(17):1660-1 [PMID: 24758623]
  23. Obesity (Silver Spring). 2011 Sep;19(9):1887-91 [PMID: 21311509]
  24. Ann Nutr Metab. 2013;62(2):137-45 [PMID: 23392264]
  25. Int J Pediatr Obes. 2011 Aug;6(3-4):163-8 [PMID: 21751832]

Grants

  1. R01 DK078645/NIDDK NIH HHS
  2. R56 DK078645/NIDDK NIH HHS
  3. P50 HD073063/NICHD NIH HHS
  4. R01 DK088105/NIDDK NIH HHS
  5. UL1 TR001082/NCATS NIH HHS

MeSH Term

Absorptiometry, Photon
Adipose Tissue
Adiposity
Anthropometry
Body Composition
Body Weight
Female
Humans
Infant
Infant, Newborn
Male
Pediatric Obesity
Plethysmography
Prospective Studies
Software

Word Cloud

Created with Highcharts 10.0.0SFDXAv1DXAv20adiposity%fat21yearhigherPEAPODchildhoodriskestimatesNBweeksDXAsoftwarenew6%obesity/metabolicmeasureddualX-rayabsorptiometryskin-foldsusingversion514vs98%4%correlationspoorcomparedbodycompositionlifeinfantBACKGROUND:InfantbetterpredictsweighttechnicalchallengesfuelcontroversyaccuracyOBJECTIVE:prospectivelytermnewbornsn = 41n = 30METHODS:DXAsanalyzedHologicApex3RESULTS:55%2%1%45%36%10AmongPearson73-089agreementintra-class52735461851%3322twicehighAgreement204038absoluteincrease197%134CONCLUSION:AnalysisscansyieldedconsiderablybirthpreviousUsingdifferentmodalitiesassesslongitudinallyproblematicStandardizationgravelyneededdetermineearlyexposuresaffectStrikingdifferencesoldAirdisplacementplethysmographyanthropometryobesityintrauterineenvironment

Similar Articles

Cited By