Neuronal connectivity between habenular glutamate-kisspeptin1 co-expressing neurons and the raphe 5-HT system.

Fatima M Nathan, Satoshi Ogawa, Ishwar S Parhar
Author Information
  1. Fatima M Nathan: Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
  2. Satoshi Ogawa: Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
  3. Ishwar S Parhar: Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.

Abstract

The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.

Keywords

Associated Data

GENBANK | EU047918

References

  1. Nature. 1993 Sep 9;365(6442):166-70 [PMID: 8396726]
  2. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3841-6 [PMID: 24567386]
  3. J Comp Neurol. 2013 Sep 1;521(13):2907-26 [PMID: 23640852]
  4. Endocrinology. 2002 Feb;143(2):456-66 [PMID: 11796498]
  5. Nat Rev Neurosci. 2011 Apr;12(4):204-16 [PMID: 21415847]
  6. J Neurosci. 1998 Oct 1;18(19):7962-71 [PMID: 9742163]
  7. J Neurosci. 2007 May 16;27(20):5271-9 [PMID: 17507550]
  8. Endocrinology. 2011 Apr;152(4):1527-40 [PMID: 21325050]
  9. Curr Biol. 2005 Feb 8;15(3):238-43 [PMID: 15694307]
  10. J Physiol Sci. 2013 Mar;63(2):147-54 [PMID: 23275149]
  11. Endocrinology. 2012 May;153(5):2398-407 [PMID: 22454151]
  12. J Comp Neurol. 1977 Nov 15;176(2):133-48 [PMID: 199623]
  13. Genesis. 2014 Jun;52(6):636-55 [PMID: 24753112]
  14. Neuroscience. 1990;37(1):77-100 [PMID: 2243599]
  15. J Comp Neurol. 1998 Jun 29;396(2):253-66 [PMID: 9634146]
  16. Front Endocrinol (Lausanne). 2013 Mar 08;4:24 [PMID: 23482509]
  17. FASEB J. 2012 Jul;26(7):2941-50 [PMID: 22499582]
  18. J Comp Neurol. 1999 May 17;407(4):555-82 [PMID: 10235645]
  19. J Fish Biol. 2010 Jan;76(1):161-82 [PMID: 20738704]
  20. J Neurosci. 2003 Aug 6;23(18):7155-9 [PMID: 12904475]
  21. Nat Rev Genet. 2007 May;8(5):353-67 [PMID: 17440532]
  22. Endocrinology. 2009 Feb;150(2):821-31 [PMID: 18927220]
  23. Philos Trans R Soc Lond B Biol Sci. 2012 Sep 5;367(1601):2382-94 [PMID: 22826339]
  24. Neurosci Lett. 1986 Jul 11;68(1):35-40 [PMID: 2873539]
  25. J Comp Neurol. 1970 Feb;138(2):137-46 [PMID: 4189834]
  26. Neurosci Biobehav Rev. 1982 Spring;6(1):1-13 [PMID: 7041014]
  27. Neurosci Lett. 2008 Feb 20;432(2):132-6 [PMID: 18222609]
  28. J Comp Neurol. 2008 Jun 1;508(4):615-47 [PMID: 18381599]
  29. Front Neurosci. 2011 Dec 21;5:138 [PMID: 22203792]
  30. J Neuroendocrinol. 2015 Mar;27(3):198-211 [PMID: 25529211]
  31. PLoS One. 2013 Jul 23;8(7):e70177 [PMID: 23894610]
  32. Genome Res. 1998 Jun;8(6):577-89 [PMID: 9647633]
  33. J Comp Neurol. 2009 Jan 10;512(2):158-82 [PMID: 19003874]
  34. Brain Res. 2001 Jan 19;889(1-2):316-30 [PMID: 11166725]
  35. Brain Res Bull. 1996;41(1):47-52 [PMID: 8883915]
  36. Gen Comp Endocrinol. 2010 Oct;169(1):48-57 [PMID: 20670626]
  37. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21171-6 [PMID: 24327734]
  38. Biol Reprod. 2008 Oct;79(4):776-86 [PMID: 18509165]
  39. Mol Cell Endocrinol. 2009 Nov 27;312(1-2):61-71 [PMID: 19084576]
  40. Neural Dev. 2008 Mar 31;3:9 [PMID: 18377638]
  41. Amino Acids. 2006 Oct;31(3):251-72 [PMID: 16820980]
  42. J Comp Neurol. 2015 Feb 15;523(3):359-80 [PMID: 25116430]
  43. Nat Rev Neurosci. 2010 Jul;11(7):503-13 [PMID: 20559337]
  44. J Physiol. 1994 Oct 1;480 ( Pt 1):155-61 [PMID: 7853219]
  45. Science. 1977 Jul 1;197(4298):89-91 [PMID: 194312]
  46. Ann N Y Acad Sci. 2010 Jul;1200:67-74 [PMID: 20633134]
  47. Peptides. 2009 Jan;30(1):16-25 [PMID: 18765263]
  48. Endocrinology. 2009 Jun;150(6):2837-46 [PMID: 19164475]
  49. Dev Dyn. 2007 Apr;236(4):1072-84 [PMID: 17304529]
  50. J Psychopharmacol. 1996 Jan;10(1):31-8 [PMID: 22302725]
  51. J Chem Neuroanat. 2011 Jul;41(4):294-308 [PMID: 21635948]
  52. J Neurochem. 2015 Jun;133(6):870-8 [PMID: 25818845]
  53. PLoS One. 2013 Apr 25;8(4):e62776 [PMID: 23638144]
  54. Brain Res Brain Res Rev. 1990 Sep-Dec;15(3):251-65 [PMID: 1981156]
  55. Development. 2013 Sep;140(18):3927-31 [PMID: 23946442]
  56. Gen Comp Endocrinol. 2012 Jan 15;175(2):234-43 [PMID: 22137912]
  57. ACS Chem Biol. 2006 Nov 21;1(10):631-8 [PMID: 17168568]
  58. J Neurosci. 2010 Jan 27;30(4):1566-74 [PMID: 20107084]
  59. Dev Neurobiol. 2012 Mar;72(3):386-94 [PMID: 21567982]
  60. Gen Comp Endocrinol. 2013 Jan 15;181:169-74 [PMID: 22967958]
  61. Biol Reprod. 2008 Feb;78(2):278-89 [PMID: 17978278]
  62. Neuron. 2014 Dec 3;84(5):1034-48 [PMID: 25467985]
  63. J Comp Neurol. 2005 Jun 20;487(1):28-41 [PMID: 15861460]
  64. Brain Res Bull. 2002 Feb-Mar 1;57(3-4):363-70 [PMID: 11922990]

MeSH Term

Animals
Animals, Genetically Modified
Glutamate Decarboxylase
Glutamic Acid
Green Fluorescent Proteins
Habenula
Kisspeptins
Male
Molecular Sequence Data
Nerve Net
Neurons
RNA, Messenger
Raphe Nuclei
Receptors, G-Protein-Coupled
Receptors, Kisspeptin-1
Serotonin
Transcription Factor Brn-3A
Transcription Factors
Zebrafish
Zebrafish Proteins

Chemicals

FEV protein, zebrafish
Kiss1 protein, zebrafish
Kisspeptins
Pou4f1 protein, mouse
RNA, Messenger
Receptors, G-Protein-Coupled
Receptors, Kisspeptin-1
Transcription Factor Brn-3A
Transcription Factors
Zebrafish Proteins
kiss1ra protein, zebrafish
Green Fluorescent Proteins
Serotonin
Glutamic Acid
Glutamate Decarboxylase
glutamate decarboxylase 1

Word Cloud

Created with Highcharts 10.0.0Kiss15-HTneuronssystemMRhabenularglutamatergiczebrafishraphekisspeptinserotoninhabenuladorsalvHbshown1connectivityantibodylabelingventro-anteriorinterneuronsmodulationmodulateprimarilyneurotransmissionrolelocatedthalamicsurfaceemotionalrewardprocessingcentermammalianbraindivideddHbventralsubdivisionsprojectinterpeduncularnucleusmedianrespectivelyPreviouslyexpressingregulatesHoweverremainsunknownresolveissuegeneratedspecificreceptorKiss-R1usingprimaryfoundintenseimmunohistochemicalcornervaMRsuggestingpotentialinvolvementDouble-fluorescenceshowedmajorityregionfibersmainlyseencloseassociationscarcelywithinGABAergicfindingsindicatepotentiallyviayetuncharacterizedneuropeptideplaykeyvertebratereproductionpreviouslymodulatorysystemsstudyproposedprovidesimportantinsightunderstandinghabenula-raphepathwayNeuronalglutamate-kisspeptin1co-expressingGPR54

Similar Articles

Cited By