Sexual dimorphism in the hypophysiotropic tyrosine hydroxylase-positive neurons in the preoptic area of the teleost, Clarias batrachus.

Soham Saha, Saurabh Patil, Uday Singh, Omprakash Singh, Praful S Singru
Author Information
  1. Soham Saha: School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India ; Present address: Institut Pasteur, Affiliated to: Ecole des neurosciences Paris (ENP) Graduate program, 28, rue du docteur Roux, 75724 Paris, Cedex 15 France.
  2. Saurabh Patil: School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India.
  3. Uday Singh: School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India.
  4. Omprakash Singh: School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India.
  5. Praful S Singru: School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India.

Abstract

BACKGROUND: Dopamine (DA) neurons in the anteroventral periventricular nucleus (AVPV) in the preoptic area (POA) of mammals express estrogen receptors, regulate luteinizing hormone (LH) secretion, and show distinct sexual dimorphism. In teleosts, hypophysiotropic DA neurons of the nucleus preopticus periventricularis (NPP), located in the anteroventral POA, express estrogen receptors, innervate LH cells, and emerged as a neuroanatomical substrate for inhibiting LH cells. Interestingly, the NPP and AVPV seem to share several similarities. Whether DAergic neurons in the NPP show sexual dimorphism is, however, not known. Based on the proposed homology to AVPV and previous studies showing greater tyrosine hydroxylase (TH) mRNA and enzyme activity levels in the brain of female catfish, we hypothesize that females have greater number of DAergic neurons in the NPP and correspondingly more TH-immunoreactive fiber innervation of the pituitary.
METHODS: Adult, male and female Clarias batrachus collected during the prespawning phase of their reproductive cycle were used. Fish were anesthetized and perfused transcardially with phosphate-buffered saline (pH 7.4) and 4 % paraformaldehyde in phosphate buffer. Sections through the rostro-caudal extent of the POA and pituitary were processed for TH immunofluorescence. Using double immunofluorescence, the association between TH-immunoreactive fibers and LH cells in the pituitary was explored. Sections were analyzed using semiquantitative analysis.
RESULTS: NPP in POA of C. batrachus has two distinct subdivisions, viz, anterior (NPPa) and posterior (NPPp), and TH neurons were observed in both the subdivisions. Compared to that in the males, a significantly higher (P < 0.05) number of TH neurons was consistently observed in the NPPa of females. TH neurons in NPPp, however, showed no difference in the number or immunoreactivity. Since DA neurons in NPPa are hypophysiotropic, we compared TH-fiber innervation of the pituitary in both sexes. Compared to males, proximal pars distalis and LH cells in this region of the pituitary in females were densely innervated by TH fibers.
CONCLUSIONS: Neurons of NPPa and their innervation to the pituitary seem to be a distinct sexually dimorphic DAergic system in C. batrachus. The DAergic system may serve as a component of the neural mechanisms controlling the sexually dimorphic LH surge in teleosts. Given the similarities shared by NPPa and AVPV, homology between these two nuclei is suggested.

Keywords

References

  1. Brain Res. 1985 Mar 18;330(1):55-64 [PMID: 2859086]
  2. Gen Comp Endocrinol. 1987 Sep;67(3):303-10 [PMID: 3311872]
  3. Cell Tissue Res. 1993;273(2):345-55 [PMID: 23885385]
  4. Neuroendocrinology. 1990 Jun;51(6):664-74 [PMID: 2141920]
  5. Endocrinology. 2006 Jun;147(6):2964-73 [PMID: 16543374]
  6. Neuroendocrinology. 1987 Jun;45(6):451-8 [PMID: 2886934]
  7. Endocrinology. 2011 Apr;152(4):1527-40 [PMID: 21325050]
  8. J Neuroendocrinol. 2012 Nov;24(11):1398-411 [PMID: 22672503]
  9. Gen Comp Endocrinol. 2014 Feb 1;197:18-25 [PMID: 24315863]
  10. Neuroendocrinology. 1982 Jun;34(6):395-404 [PMID: 6808412]
  11. Brain Res Brain Res Rev. 2000 Sep;33(2-3):308-79 [PMID: 11011071]
  12. Gen Comp Endocrinol. 2003 Jan;130(1):29-40 [PMID: 12535622]
  13. J Comp Neurol. 1990 Feb 1;292(1):127-62 [PMID: 1968915]
  14. Brain Res. 1987 Jan 1;400(1):11-34 [PMID: 2880634]
  15. Fish Physiol Biochem. 1993 Jul;11(1-6):85-98 [PMID: 24202464]
  16. Gen Comp Endocrinol. 1979 Feb;37(2):246-9 [PMID: 447065]
  17. Front Endocrinol (Lausanne). 2013 Mar 08;4:24 [PMID: 23482509]
  18. Front Neurosci. 2011 Dec 19;5:137 [PMID: 22194715]
  19. Endocrinology. 2013 Aug;154(8):2821-32 [PMID: 23736294]
  20. Brain Behav Evol. 1993;42(1):24-38 [PMID: 8324622]
  21. Rev Reprod. 1997 Jan;2(1):55-68 [PMID: 9414466]
  22. Biol Reprod. 2004 Nov;71(5):1491-500 [PMID: 15229141]
  23. Physiol Behav. 2008 Sep 3;95(1-2):36-47 [PMID: 18499199]
  24. J Hirnforsch. 1991;32(3):289-308 [PMID: 1723419]
  25. Brain Res Mol Brain Res. 1989 Dec;6(4):297-310 [PMID: 2574404]
  26. Gen Comp Endocrinol. 1989 Feb;73(2):270-83 [PMID: 2468554]
  27. J Comp Neurol. 2011 Dec 15;519(18):3748-65 [PMID: 21674489]
  28. Mol Cell Neurosci. 2010 Apr;43(4):394-402 [PMID: 20123022]
  29. J Comp Neurol. 2007 May 10;502(2):215-35 [PMID: 17348009]
  30. Gen Comp Endocrinol. 2010 Feb 1;165(3):438-55 [PMID: 19393655]
  31. J Comp Neurol. 2007 Oct 10;504(5):450-69 [PMID: 17701999]
  32. Brain Res Mol Brain Res. 2005 Nov 18;141(1):1-9 [PMID: 16226340]
  33. J Comp Neurol. 2010 Feb 15;518(4):423-38 [PMID: 20017209]
  34. J Comp Neurol. 2005 Feb 28;483(1):91-113 [PMID: 15672394]
  35. Neuroscience. 2012 Aug 30;218:65-77 [PMID: 22609934]
  36. Physiol Behav. 1981 Nov;27(5):855-61 [PMID: 7034011]
  37. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3306-11 [PMID: 11854469]
  38. J Neurobiol. 2005 Oct;65(1):37-49 [PMID: 16003720]
  39. Endocrinology. 2005 Sep;146(9):3686-92 [PMID: 15919741]
  40. J Fish Biol. 2010 Jan;76(1):129-60 [PMID: 20738703]
  41. Mol Cell Endocrinol. 2013 Aug 15;375(1-2):130-9 [PMID: 23701825]
  42. Acta Physiol Scand Suppl. 1964;:SUPPL 232:1-55 [PMID: 14229500]
  43. Eur J Neurosci. 2010 Dec;32(12):2105-15 [PMID: 21143665]
  44. Psychoneuroendocrinology. 2014 Dec;50:194-208 [PMID: 25233338]
  45. PLoS One. 2015 Apr 07;10(4):e0121914 [PMID: 25849450]
  46. J Neuroendocrinol. 2011 Apr;23(4):302-9 [PMID: 21276102]
  47. Front Neuroanat. 2011 Mar 29;5:21 [PMID: 21483723]
  48. Endocrinology. 1955 Aug;57(2):243-52 [PMID: 13251229]
  49. Nat Commun. 2011 Jan 25;2:171 [PMID: 21266970]
  50. Arch Ital Biol. 1998 Jan;136(1):17-44 [PMID: 9492943]
  51. J Neuroendocrinol. 2015 Sep;27(9):708-17 [PMID: 26132331]
  52. Gen Comp Endocrinol. 2003 Apr;131(2):126-33 [PMID: 12679089]
  53. Fish Physiol Biochem. 1986 Oct;2(1-4):25-34 [PMID: 24233165]
  54. Horm Behav. 2004 Dec;46(5):628-37 [PMID: 15555505]
  55. BMC Neurosci. 2007 Feb 01;8:13 [PMID: 17266774]
  56. J Neuroendocrinol. 2012 Jun;24(6):897-906 [PMID: 22340198]
  57. Neurosci Lett. 1989 Dec 15;107(1-3):39-44 [PMID: 2616047]
  58. Anat Rec. 1946 Feb;94:239-47 [PMID: 21015608]
  59. J Chem Neuroanat. 1995 Feb;8(2):125-45 [PMID: 7598813]
  60. J Chem Neuroanat. 2000 May;19(1):17-32 [PMID: 10882834]
  61. Neuroendocrinology. 1983 May;36(5):351-7 [PMID: 6343907]
  62. J Neuroendocrinol. 2014 Jun;26(6):400-11 [PMID: 24750502]
  63. Front Endocrinol (Lausanne). 2012 Feb 22;3:28 [PMID: 22654859]
  64. Brain Behav Evol. 1996;47(4):179-84 [PMID: 9156780]
  65. Neurotoxicol Teratol. 2006 Jan-Feb;28(1):111-8 [PMID: 16427766]
  66. Endocrinology. 2004 Sep;145(9):4073-7 [PMID: 15217982]
  67. J Comp Neurol. 2002 Aug 5;449(4):374-89 [PMID: 12115673]
  68. Gen Comp Endocrinol. 1988 Dec;72(3):431-42 [PMID: 3071489]
  69. Neuroendocrinology. 1996 Feb;63(2):156-65 [PMID: 9053780]
  70. Endocrinology. 2013 Feb;154(2):807-18 [PMID: 23295741]
  71. Brain Behav Evol. 1994;43(2):61-78 [PMID: 8143144]
  72. Front Neural Circuits. 2013 Apr 08;7:63 [PMID: 23580329]
  73. Endocrinology. 2008 May;149(5):2467-76 [PMID: 18202129]

Word Cloud

Created with Highcharts 10.0.0neuronsLHNPPTHpituitaryNPPaAVPVPOAdimorphismcellsDAergicbatrachusDAareadistincthypophysiotropicfemalesnumberinnervationDopamineanteroventralnucleuspreopticexpressestrogenreceptorsshowsexualteleostspreopticusperiventricularisseemsimilaritieshoweverhomologygreatertyrosinefemaleTH-immunoreactiveClariasSectionsimmunofluorescencefibersCtwosubdivisionsNPPpobservedComparedmalessexuallydimorphicsystemSexualBACKGROUND:periventricularmammalsregulateluteinizinghormonesecretionlocatedinnervateemergedneuroanatomicalsubstrateinhibitingInterestinglyshareseveralWhetherknownBasedproposedpreviousstudiesshowinghydroxylasemRNAenzymeactivitylevelsbraincatfishhypothesizecorrespondinglyfiberMETHODS:AdultmalecollectedprespawningphasereproductivecycleusedFishanesthetizedperfusedtranscardiallyphosphate-bufferedsalinepH744 %paraformaldehydephosphatebufferrostro-caudalextentprocessedUsingdoubleassociationexploredanalyzedusingsemiquantitativeanalysisRESULTS:vizanteriorposteriorsignificantlyhigherP < 005consistentlyshoweddifferenceimmunoreactivitySincecomparedTH-fibersexesproximalparsdistalisregiondenselyinnervatedCONCLUSIONS:NeuronsmayservecomponentneuralmechanismscontrollingsurgeGivensharednucleisuggestedhydroxylase-positiveteleostNucleusPituitaryPreopticReproductionTeleosts

Similar Articles

Cited By