Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.

Neelam R Redekar, Ruslan M Biyashev, Roderick V Jensen, Richard F Helm, Elizabeth A Grabau, M A Saghai Maroof
Author Information
  1. Neelam R Redekar: Department of Crop and Soil Environmental Sciences, Virginia Tech, 185 AgQuad Lane, 24061, Blacksburg, VA, USA. neelamrr@vt.edu.
  2. Ruslan M Biyashev: Department of Crop and Soil Environmental Sciences, Virginia Tech, 185 AgQuad Lane, 24061, Blacksburg, VA, USA. rbiyashe@vt.edu.
  3. Roderick V Jensen: Department of Biological Sciences, Virginia Tech, Life Science I building, 24061, Blacksburg, VA, USA. rvjensen@vt.edu.
  4. Richard F Helm: Department of Biochemistry, Virginia Tech, Life Science I building, 24061, Blacksburg, VA, USA. helmrf@vt.edu.
  5. Elizabeth A Grabau: Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Price Hall, 24061, Blacksburg, VA, USA. egrabau@vt.edu.
  6. M A Saghai Maroof: Department of Crop and Soil Environmental Sciences, Virginia Tech, 185 AgQuad Lane, 24061, Blacksburg, VA, USA. smaroof@vt.edu.

Abstract

BACKGROUND: Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes.
RESULTS: RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively.
CONCLUSIONS: This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. FEBS Lett. 2008 Mar 19;582(6):943-8 [PMID: 18298954]
  3. FEBS Lett. 2006 Feb 13;580(4):1094-102 [PMID: 16359667]
  4. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 [PMID: 20435677]
  5. Planta. 2006 Jun;224(1):125-32 [PMID: 16395584]
  6. BMC Mol Biol. 2009;10:93 [PMID: 19785741]
  7. Plant J. 1999 Apr;18(1):111-9 [PMID: 10341448]
  8. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16463-8 [PMID: 21911370]
  9. Nat Biotechnol. 2007 Aug;25(8):930-7 [PMID: 17676037]
  10. Plant J. 2013 Dec;76(6):901-13 [PMID: 24118612]
  11. Bioinformatics. 2007 May 15;23(10):1289-91 [PMID: 17379693]
  12. Trends Plant Sci. 2001 Oct;6(10):458-62 [PMID: 11590064]
  13. Plant Physiol. 2002 Feb;128(2):650-60 [PMID: 11842168]
  14. Plant Signal Behav. 2012 Feb;7(2):188-92 [PMID: 22353867]
  15. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  16. New Phytol. 2010 Nov;188(3):711-8 [PMID: 20807338]
  17. PLoS Genet. 2011 Jul;7(7):e1002172 [PMID: 21779177]
  18. Plant Cell. 2011 Apr;23(4):1352-72 [PMID: 21505066]
  19. J Anim Sci. 2009 Apr;87(4):1518-27 [PMID: 19028841]
  20. Plant J. 2003 Oct;36(1):94-104 [PMID: 12974814]
  21. BMC Genomics. 2010;11:136 [PMID: 20181280]
  22. J Biol Chem. 2010 Jul 30;285(31):24238-47 [PMID: 20516080]
  23. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10091-5 [PMID: 12913129]
  24. Nature. 2009 Feb 26;457(7233):1154-8 [PMID: 19122675]
  25. Cell. 2000 May 26;101(5):555-67 [PMID: 10850497]
  26. Plant J. 2012 Feb;69(4):640-54 [PMID: 21992190]
  27. Gene. 2009 Jun 15;439(1-2):1-10 [PMID: 19306919]
  28. Theor Appl Genet. 2009 Jun;119(1):75-83 [PMID: 19370321]
  29. Plant J. 2004 Jun;38(5):810-22 [PMID: 15144382]
  30. J Anim Sci. 2007 Mar;85(3):700-5 [PMID: 17121975]
  31. Annu Rev Plant Biol. 2007;58:321-46 [PMID: 17227226]
  32. Trends Plant Sci. 2000 May;5(5):199-206 [PMID: 10785665]
  33. Proc Natl Acad Sci U S A. 1962 Mar;48(3):421-5 [PMID: 16590933]
  34. Nature. 2007 Aug 9;448(7154):666-71 [PMID: 17637675]
  35. PLoS One. 2009;4(10):e7364 [PMID: 19812700]
  36. Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86 [PMID: 22110026]
  37. Genome Biol. 2013;14(4):R36 [PMID: 23618408]
  38. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  39. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8687-92 [PMID: 10890897]
  40. Front Plant Sci. 2015 Jan 30;6:24 [PMID: 25688254]
  41. Nature. 2010 Jan 14;463(7278):178-83 [PMID: 20075913]
  42. Mol Plant. 2011 Jul;4(4):641-62 [PMID: 21746702]
  43. Science. 2003 Jan 3;299(5603):112-4 [PMID: 12434013]
  44. Plant Cell. 2013 Mar;25(3):901-26 [PMID: 23524662]
  45. Plant J. 2008 Nov;56(4):638-52 [PMID: 18643983]
  46. Nucleic Acids Res. 2012 Aug;40(15):e115 [PMID: 22730293]
  47. Metabolites. 2013 May 14;3(2):347-72 [PMID: 24957996]
  48. Plant Cell. 2010 Mar;22(3):888-903 [PMID: 20215587]
  49. Genetics. 2006 Jun;173(2):985-94 [PMID: 16547115]
  50. Plant Physiol. 2004 Sep;136(1):2818-30 [PMID: 15347794]
  51. Plant J. 2003 Jan;33(1):119-29 [PMID: 12943546]
  52. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2160-5 [PMID: 21245327]
  53. J Biol Chem. 2009 Nov 27;284(48):33614-22 [PMID: 19797057]
  54. Plant Cell. 2003 Apr;15(4):809-34 [PMID: 12671079]
  55. Genes Dev. 2000 May 15;14(10):1269-78 [PMID: 10817761]
  56. BMC Plant Biol. 2010;10:160 [PMID: 20687943]
  57. Science. 1999 Jul 2;285(5424):96-100 [PMID: 10390371]
  58. J Nutr. 1992 Dec;122(12):2466-73 [PMID: 1453231]
  59. Planta. 1981 Oct;153(2):130-9 [PMID: 24276763]
  60. Plant Cell. 1998 May;10(5):753-64 [PMID: 9596634]
  61. Cell. 2000 Sep 15;102(6):721-9 [PMID: 11030616]
  62. Plant Physiol. 2009 Mar;149(3):1462-77 [PMID: 19091878]
  63. Trends Biochem Sci. 2000 Feb;25(2):39-43 [PMID: 10664577]

MeSH Term

Biological Transport
Cluster Analysis
Computational Biology
Disease Resistance
Gene Expression Profiling
Gene Expression Regulation, Plant
Gene Ontology
Genes, Plant
Genome-Wide Association Study
Glucans
Molecular Sequence Annotation
Mutation
Photosynthesis
Phytic Acid
Seeds
Glycine max
Transcription Factors
Transcriptome

Chemicals

Glucans
Transcription Factors
Phytic Acid