Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma.

Kyu-Tae Kim, Hye Won Lee, Hae-Ock Lee, Hye Jin Song, Da Eun Jeong, Sang Shin, Hyunho Kim, Yoojin Shin, Do-Hyun Nam, Byong Chang Jeong, David G Kirsch, Kyeung Min Joo, Woong-Yang Park
Author Information
  1. Kyu-Tae Kim: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.
  2. Hye Won Lee: Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
  3. Hae-Ock Lee: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.
  4. Hye Jin Song: Departments of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  5. Da Eun Jeong: Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea.
  6. Sang Shin: Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea.
  7. Hyunho Kim: School of Mechanical Engineering, Korea University, Seoul, South Korea.
  8. Yoojin Shin: School of Mechanical Engineering, Korea University, Seoul, South Korea.
  9. Do-Hyun Nam: Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea.
  10. Byong Chang Jeong: Departments of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  11. David G Kirsch: Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
  12. Kyeung Min Joo: Departments of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, South Korea. kmjoo@skku.edu.
  13. Woong-Yang Park: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. woongyang.park@samsung.com.

Abstract

BACKGROUND: Intratumoral heterogeneity hampers the success of marker-based anticancer treatment because the targeted therapy may eliminate a specific subpopulation of tumor cells while leaving others unharmed. Accordingly, a rational strategy minimizing survival of the drug-resistant subpopulation is essential to achieve long-term therapeutic efficacy.
RESULTS: Using single-cell RNA sequencing (RNA-seq), we examine the intratumoral heterogeneity of a pair of primary renal cell carcinoma and its lung metastasis. Activation of drug target pathways demonstrates considerable variability between the primary and metastatic sites, as well as among individual cancer cells within each site. Based on the prediction of multiple drug target pathway activation, we derive a combinatorial regimen co-targeting two mutually exclusive pathways for the metastatic cancer cells. This combinatorial strategy shows significant increase in the treatment efficacy over monotherapy in the experimental validation using patient-derived xenograft platforms in vitro and in vivo.
CONCLUSIONS: Our findings demonstrate the investigational application of single-cell RNA-seq in the design of an anticancer regimen. The approach may overcome intratumoral heterogeneity which hampers the success of precision medicine.

Keywords

References

  1. Arch Pathol Lab Med. 2012 Dec;136(12):1541-51 [PMID: 23194047]
  2. BMC Bioinformatics. 2013;14:7 [PMID: 23323831]
  3. Clin Cancer Res. 2015 Mar 1;21(5):1172-82 [PMID: 25549722]
  4. Lancet Oncol. 2013 Feb;14(2):141-8 [PMID: 23312463]
  5. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6994-9 [PMID: 20335537]
  6. Genes Dev. 2013 Oct 15;27(20):2192-206 [PMID: 24142872]
  7. Genome Biol. 2014;15(3):R47 [PMID: 24580837]
  8. Hum Pathol. 1997 Nov;28(11):1255-9 [PMID: 9385930]
  9. Cell Physiol Biochem. 2012;29(3-4):341-52 [PMID: 22508042]
  10. Anal Chem. 2014 Jan 7;86(1):535-42 [PMID: 24199994]
  11. Science. 2008 Dec 5;322(5907):1511-6 [PMID: 19023046]
  12. Clin Cancer Res. 2005 Jul 15;11(14):5128-39 [PMID: 16033827]
  13. Nat Commun. 2013;4:2612 [PMID: 24113773]
  14. Clin Cancer Res. 2011 Sep 1;17(17):5546-52 [PMID: 21670084]
  15. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  16. Drugs. 2014 Feb;74(2):207-21 [PMID: 24435321]
  17. Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):E4726-35 [PMID: 25339441]
  18. Nature. 2012 Jul 26;487(7408):510-3 [PMID: 22763454]
  19. Br J Cancer. 2014 Feb 4;110(3):686-94 [PMID: 24327013]
  20. Nature. 2010 Apr 15;464(7291):999-1005 [PMID: 20393555]
  21. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  22. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  23. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15449-54 [PMID: 20713713]
  24. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  25. J Thorac Dis. 2012 Feb;4(1):40-7 [PMID: 22295166]
  26. Bioinformatics. 2007 Mar 15;23(6):657-63 [PMID: 17234643]
  27. N Engl J Med. 2012 Mar 8;366(10):883-92 [PMID: 22397650]
  28. Nat Med. 2011;17(11):1514-20 [PMID: 22019887]
  29. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  30. Cell. 2012 Feb 3;148(3):409-20 [PMID: 22304912]
  31. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  32. Cancer Res. 2013 Sep 1;73(17):5315-9 [PMID: 23733750]
  33. Nature. 2013 Jul 4;499(7456):43-9 [PMID: 23792563]
  34. Nature. 2013 Sep 19;501(7467):338-45 [PMID: 24048066]
  35. Int J Cancer. 1996 Feb 20;69(1):17-22 [PMID: 8600053]
  36. Nature. 2012 Feb 23;482(7386):529-33 [PMID: 22343890]
  37. Med Mol Morphol. 2014 Jun;47(2):63-7 [PMID: 24213520]
  38. N Engl J Med. 2007 May 31;356(22):2271-81 [PMID: 17538086]
  39. Clin Cancer Res. 2012 Oct 1;18(19):5314-28 [PMID: 22825584]
  40. Nat Protoc. 2012 Jul;7(7):1247-59 [PMID: 22678430]
  41. BMC Bioinformatics. 2011;12:323 [PMID: 21816040]
  42. Cancer Res. 2005 Jun 15;65(12):5221-30 [PMID: 15958567]
  43. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  44. Genome Biol. 2014;15(8):452 [PMID: 25222669]
  45. Nat Rev Urol. 2010 May;7(5):277-85 [PMID: 20448661]
  46. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  47. Lancet. 2011 Dec 3;378(9807):1931-9 [PMID: 22056247]
  48. Lancet Oncol. 2009 Oct;10(10):992-1000 [PMID: 19796751]
  49. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  50. Genome Biol. 2015;16:127 [PMID: 26084335]
  51. Cell. 2012 Mar 2;148(5):886-95 [PMID: 22385958]
  52. Nature. 2009 May 21;459(7245):428-32 [PMID: 19363473]
  53. Clin Cancer Res. 2005 Aug 15;11(16):5730-9 [PMID: 16115910]
  54. Nat Genet. 2014 Mar;46(3):225-33 [PMID: 24487277]
  55. Nat Biotechnol. 2014 Dec;32(12):1202-12 [PMID: 24880487]
  56. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  57. Science. 2013 Feb 1;339(6119):543-8 [PMID: 23239622]
  58. Cancer Treat Rev. 2008 May;34(3):193-205 [PMID: 18313224]
  59. Int J Clin Pract. 2004 Apr;58(4):333-6 [PMID: 15161115]
  60. Nat Biotechnol. 2015 Mar;33(3):306-12 [PMID: 25485619]
  61. Nat Rev Cancer. 2009 Apr;9(4):302-12 [PMID: 19308069]
  62. Mol Carcinog. 2005 Aug;43(4):188-97 [PMID: 15864803]
  63. Cancer Sci. 2004 Mar;95(3):197-204 [PMID: 15016317]
  64. Nat Biotechnol. 2012 May;30(5):413-21 [PMID: 22544022]
  65. Nat Protoc. 2009;4(3):309-24 [PMID: 19214182]
  66. Nat Methods. 2014 Apr;11(4):396-8 [PMID: 24633410]
  67. Br J Cancer. 2008 Oct 7;99(7):1074-82 [PMID: 18797457]
  68. Nat Biotechnol. 2013 Mar;31(3):213-9 [PMID: 23396013]
  69. J Clin Oncol. 2008 May 10;26(14):2285-91 [PMID: 18467719]
  70. Nature. 2012 Mar 29;483(7391):570-5 [PMID: 22460902]

MeSH Term

Adult
Animals
Carcinoma, Renal Cell
Cells, Cultured
Gene Expression Profiling
Humans
Kidney Neoplasms
Lung Neoplasms
Male
Mice
Molecular Targeted Therapy
Sequence Analysis, RNA
Single-Cell Analysis