Randomness in Sequence Evolution Increases over Time.

Guangyu Wang, Shixiang Sun, Zhang Zhang
Author Information
  1. Guangyu Wang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China.
  2. Shixiang Sun: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China.
  3. Zhang Zhang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China.

Abstract

The second law of thermodynamics states that entropy, as a measure of randomness in a system, increases over time. Although studies have investigated biological sequence randomness from different aspects, it remains unknown whether sequence randomness changes over time and whether this change consists with the second law of thermodynamics. To capture the dynamics of randomness in molecular sequence evolution, here we detect sequence randomness based on a collection of eight statistical random tests and investigate the randomness variation of coding sequences with an application to Escherichia coli. Given that core/essential genes are more ancient than specific/non-essential genes, our results clearly show that core/essential genes are more random than specific/non-essential genes and accordingly indicate that sequence randomness indeed increases over time, consistent well with the second law of thermodynamics. We further find that an increase in sequence randomness leads to increasing randomness of GC content and longer sequence length. Taken together, our study presents an important finding, for the first time, that sequence randomness increases over time, which may provide profound insights for unveiling the underlying mechanisms of molecular sequence evolution.

References

  1. Genomics Proteomics Bioinformatics. 2011 Apr;9(1-2):21-9 [PMID: 21641559]
  2. Mol Biol Evol. 2005 Mar;22(3):598-606 [PMID: 15537804]
  3. Genome Res. 2009 Jul;19(7):1195-201 [PMID: 19439516]
  4. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8580-4 [PMID: 9671720]
  5. Nature. 2009 Apr 9;458(7239):719-24 [PMID: 19360079]
  6. J Theor Biol. 1981 Jun 21;90(4):515-30 [PMID: 7300376]
  7. Genome Res. 2002 Jun;12(6):962-8 [PMID: 12045149]
  8. Nucleic Acids Res. 2014 Jan;42(Database issue):D574-80 [PMID: 24243843]
  9. Nucleic Acids Res. 2014 Jan;42(Database issue):D7-17 [PMID: 24259429]
  10. Genomics Proteomics Bioinformatics. 2007 Feb;5(1):1-6 [PMID: 17572358]
  11. PLoS One. 2012;7(5):e36634 [PMID: 22615786]
  12. J Mol Evol. 1996 Sep;43(3):216-23 [PMID: 8703087]
  13. Nat Rev Cancer. 2006 Dec;6(12):924-35 [PMID: 17109012]
  14. J Theor Biol. 2008 Oct 21;254(4):775-83 [PMID: 18692072]
  15. Genomics Proteomics Bioinformatics. 2007 Dec;5(3-4):143-51 [PMID: 18267295]
  16. Trends Genet. 2013 May;29(5):273-9 [PMID: 23219343]
  17. J Mol Evol. 1994 Apr;38(4):383-94 [PMID: 8007006]
  18. Mol Biol Evol. 2006 Jul;23(7):1450-4 [PMID: 16687416]
  19. Cold Spring Harb Perspect Biol. 2010 Sep;2(9):a003483 [PMID: 20534711]
  20. Bioinformatics. 2010 Feb 1;26(3):310-8 [PMID: 19948773]
  21. Microb Ecol. 2010 Nov;60(4):708-20 [PMID: 20623278]
  22. J Med Chem. 2013 Jul 25;56(14):5782-96 [PMID: 23786452]
  23. J Bacteriol. 2003 Oct;185(19):5673-84 [PMID: 13129938]
  24. J Theor Biol. 2000 Oct 7;206(3):379-86 [PMID: 10988023]
  25. J Mol Evol. 1993 Jan;36(1):79-95 [PMID: 8433379]
  26. Bioinformatics. 2011 Feb 15;27(4):556-63 [PMID: 21172912]
  27. Genome Biol Evol. 2011;3:75-86 [PMID: 21148284]
  28. Biophys Chem. 2008 May;134(3):232-8 [PMID: 18329784]
  29. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D271-2 [PMID: 14681410]
  30. Genomics Proteomics Bioinformatics. 2012 Aug;10(4):175-80 [PMID: 23084772]
  31. J Mol Evol. 2003 Mar;56(3):362-70 [PMID: 12612839]
  32. Curr Opin Genet Dev. 2005 Dec;15(6):589-94 [PMID: 16185861]
  33. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12972-5 [PMID: 7809157]

MeSH Term

Base Composition
Escherichia coli
Evolution, Molecular
Models, Genetic

Word Cloud

Similar Articles

Cited By