Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

Xinpeng Tian, Zhewen Zhang, Tingting Yang, Meili Chen, Jie Li, Fei Chen, Jin Yang, Wenjie Li, Bing Zhang, Zhang Zhang, Jiayan Wu, Changsheng Zhang, Lijuan Long, Jingfa Xiao
Author Information
  1. Xinpeng Tian: Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China.
  2. Zhewen Zhang: Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  3. Tingting Yang: Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China.
  4. Meili Chen: Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  5. Jie Li: Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China.
  6. Fei Chen: Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  7. Jin Yang: Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  8. Wenjie Li: Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  9. Bing Zhang: Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  10. Zhang Zhang: Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  11. Jiayan Wu: Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.
  12. Changsheng Zhang: Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China.
  13. Lijuan Long: Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China.
  14. Jingfa Xiao: Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China.

Abstract

Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.

Keywords

References

  1. Nat Rev Microbiol. 2007 Oct;5(10):770-81 [PMID: 17828281]
  2. Nature. 2000 May 18;405(6784):299-304 [PMID: 10830951]
  3. Gigascience. 2012 Dec 27;1(1):18 [PMID: 23587118]
  4. Genome Biol Evol. 2014 Apr;6(4):741-53 [PMID: 24625962]
  5. Appl Environ Microbiol. 2008 Oct;74(20):6298-305 [PMID: 18723648]
  6. FEMS Microbiol Rev. 2010 Mar;34(2):171-98 [PMID: 20088961]
  7. J Mol Microbiol Biotechnol. 2007;12(3-4):165-79 [PMID: 17587866]
  8. Eur J Biochem. 1992 Jun 1;206(2):559-65 [PMID: 1350764]
  9. Antimicrob Agents Chemother. 1992 Apr;36(4):695-703 [PMID: 1503431]
  10. Mol Biol Evol. 2006 Dec;23(12):2379-91 [PMID: 16966682]
  11. J Bacteriol. 2011 Dec;193(24):6999-7000 [PMID: 22123757]
  12. Toxicol Ind Health. 1999 Nov;15(7):602-44 [PMID: 10677885]
  13. Genome Biol Evol. 2012;4(3):212-29 [PMID: 22234601]
  14. J Bacteriol. 2012 Oct;194(19):5474-5 [PMID: 22965095]
  15. Appl Environ Microbiol. 2009 May;75(9):2802-10 [PMID: 19286794]
  16. Toxicol Lett. 2002 Jul 7;133(1):1-16 [PMID: 12076506]
  17. PLoS One. 2012;7(5):e37607 [PMID: 22666370]
  18. EMBO Rep. 2014 Aug;15(8):886-93 [PMID: 24916388]
  19. FEBS Lett. 1996 Oct 21;395(2-3):272-6 [PMID: 8898110]
  20. Anal Bioanal Chem. 2011 Aug;401(2):699-706 [PMID: 21626195]
  21. PLoS One. 2012;7(9):e45346 [PMID: 23028950]
  22. Genome Res. 2008 May;18(5):821-9 [PMID: 18349386]
  23. J Bacteriol. 2000 Aug;182(15):4216-21 [PMID: 10894729]
  24. J Biol Chem. 2009 Jul 24;284(30):19887-95 [PMID: 19494117]
  25. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  26. J Bacteriol. 2008 Jun;190(11):4050-60 [PMID: 18375553]
  27. Eur J Biochem. 2001 Jul;268(13):3620-39 [PMID: 11432728]
  28. Curr Opin Microbiol. 2015 Feb;23:148-54 [PMID: 25483351]
  29. Curr Opin Genet Dev. 2005 Dec;15(6):589-94 [PMID: 16185861]
  30. J Bacteriol. 2011 Jun;193(11):2890-1 [PMID: 21460079]
  31. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  32. Arch Microbiol. 1998 Oct;170(5):319-30 [PMID: 9818351]
  33. Genetics. 2006 Apr;172(4):2665-81 [PMID: 16489234]
  34. Nucleic Acids Res. 2001 Jan 1;29(1):22-8 [PMID: 11125040]
  35. ISME J. 2011 Feb;5(2):274-84 [PMID: 20703316]
  36. Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114 [PMID: 10704475]
  37. Annu Rev Genet. 2006;40:1-23 [PMID: 16761950]
  38. Nucleic Acids Res. 2007 Jan;35(Database issue):D274-9 [PMID: 17135193]
  39. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  40. Curr Biol. 2007 May 15;17(10):881-6 [PMID: 17493812]
  41. Trends Biochem Sci. 1999 Apr;24(4):133-5 [PMID: 10322417]
  42. BMC Genomics. 2013 Jul 18;14:489 [PMID: 23865772]
  43. Nucleic Acids Res. 2013 Apr;41(7):e75 [PMID: 23335788]
  44. Bioinformatics. 2012 Feb 1;28(3):416-8 [PMID: 22130594]
  45. Antonie Van Leeuwenhoek. 2012 Aug;102(2):335-43 [PMID: 22696167]
  46. BMC Genomics. 2010 Apr 17;11:247 [PMID: 20398413]
  47. Bioorg Med Chem Lett. 2014 Sep 1;24(17):4291-3 [PMID: 25052426]
  48. J Bacteriol. 2011 Dec;193(23):6586-96 [PMID: 21984786]
  49. J Am Chem Soc. 2011 Nov 16;133(45):18010-3 [PMID: 21999343]
  50. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  51. Nature. 2011 Jan 6;469(7328):93-6 [PMID: 21170026]
  52. J Exp Biol. 1994 Nov;196:443-56 [PMID: 7823039]
  53. Front Biosci. 2004 Sep 01;9:1999-2019 [PMID: 15353266]
  54. BMC Bioinformatics. 2007 Jan 20;8:18 [PMID: 17239253]
  55. J Bacteriol. 2011 Jul;193(13):3417-8 [PMID: 21551298]
  56. Biochem Biophys Res Commun. 2002 Jan 18;290(2):824-9 [PMID: 11785976]
  57. Archaea. 2015 Jan 29;2015:241608 [PMID: 25709556]
  58. PLoS One. 2008 Apr 09;3(4):e1937 [PMID: 18398463]
  59. Science. 2008 Oct 31;322(5902):709-13 [PMID: 18927357]
  60. Bioinformatics. 2014 May 1;30(9):1297-9 [PMID: 24420766]
  61. BMC Genomics. 2011 Oct 25;12:523 [PMID: 22026465]
  62. Curr Opin Microbiol. 2008 Oct;11(5):472-7 [PMID: 19086349]
  63. Nucleic Acids Res. 2007;35(9):3100-8 [PMID: 17452365]
  64. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  65. PLoS Comput Biol. 2005 Aug;1(3):e27 [PMID: 16118665]
  66. Drug Discov Today. 2007 Jun;12(11-12):429-39 [PMID: 17532526]
  67. MBio. 2013 Oct 15;4(5):e00443-13 [PMID: 24129255]
  68. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5 [PMID: 16172379]
  69. Res Microbiol. 2002 Jan-Feb;153(1):19-25 [PMID: 11881894]
  70. PLoS Comput Biol. 2015 Feb 12;11(2):e1004041 [PMID: 25675341]
  71. FEMS Microbiol Rev. 2011 Jan;35(1):68-86 [PMID: 20584082]
  72. J Bacteriol. 2012 Aug;194(16):4482 [PMID: 22843605]
  73. Microb Cell Fact. 2011 May 20;10:39 [PMID: 21599905]
  74. J Bacteriol. 2012 Aug;194(15):4144 [PMID: 22815456]
  75. Clin Infect Dis. 1998 Jul;27(1):93-6 [PMID: 9675460]
  76. J Bacteriol. 2009 Sep;191(18):5802-13 [PMID: 19633083]
  77. Microb Ecol. 2011 May;61(4):759-68 [PMID: 21249352]
  78. Lett Appl Microbiol. 2001 Jul;33(1):17-20 [PMID: 11442808]
  79. Genomics Proteomics Bioinformatics. 2015 Feb;13(1):73-6 [PMID: 25721608]
  80. FEBS Lett. 1999 Feb 12;444(2-3):170-2 [PMID: 10050752]
  81. Microbiology. 2005 May;151(Pt 5):1507-23 [PMID: 15870461]
  82. Science. 1994 Apr 15;264(5157):382-8 [PMID: 8153625]
  83. Microb Cell Fact. 2009 Jun 08;8:33 [PMID: 19505319]
  84. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  85. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  86. Virology. 1999 Dec 20;265(2):218-25 [PMID: 10600594]
  87. ISME J. 2008 Dec;2(12):1194-212 [PMID: 18670397]
  88. Environ Microbiol. 2014 Jun;16(6):1642-53 [PMID: 25009843]

Word Cloud

Similar Articles

Cited By