Nanomechanics of Engineered Articular Cartilage: Synergistic Influences of Transforming Growth Factor-��3 and Oscillating Pressure.

Arshan Nazempour, Chrystal R Quisenberry, Bernard J Van Wie, Nehal I Abu-Lail
Author Information
  1. Arshan Nazempour: Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington.
  2. Chrystal R Quisenberry: Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington.
  3. Bernard J Van Wie: Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington.
  4. Nehal I Abu-Lail: Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington.

Abstract

Articular cartilage (AC), tissue with the lowest volumetric cellular density, is not supplied with blood and nerve tissue resulting in limited ability for self-repair upon injury. Because there is no treatment capable of fully restoring damaged AC, tissue engineering is being investigated. The emphasis of this field is to engineer functional tissues in vitro in bioreactors capable of mimicking in vivo envi- ronments required for appropriate cellular growth and differentiation. In a step towards engineering AC, human adipose-derived stem cells were differentiated in a unique centrifugal bioreactor under oscillating hydrostatic pressure (OHP) and supply of transforming growth factor beta 3 (TGF-��3) that mimic in vivo environments. Static micromass and pellet cultures were used as controls. Since withstanding and absorbing loads are among the main functions of an AC, mechanical properties of the engineered AC tissues were assayed using atomic force microscopy (AFM) under a controlled indentation depth of 100 nm. Young's moduli of elasticity were quantified by modeling AFM force-indentation data using the Hertz model of contact mechanics. We found exposure to OHP causes cartilage constructs to have 45-fold higher Young's moduli compared to static cultures. Addition of TGF-��3 further increases Young's moduli in bioreactor samples by 1.9-fold bringing it within 70.6% of the values estimated for native cartilage. Our results imply that OHP and TGF-��3 act synergistically to improve the mechanics of engineered tissues.

References

  1. J Biomech. 2010 Dec 1;43(16):3091-8 [PMID: 20817164]
  2. Eur Cell Mater. 2011 Oct 11;22:214-25 [PMID: 22048899]
  3. Soft Matter. 2010 Jan 1;6(16):3898-3909 [PMID: 20871743]
  4. Tissue Eng Part A. 2008 Nov;14(11):1821-34 [PMID: 18611145]
  5. Dev Biol. 1997 Mar 1;183(1):108-21 [PMID: 9119111]
  6. Tissue Eng Part A. 2012 Oct;18(19-20):1979-91 [PMID: 22559784]
  7. Tissue Eng. 2006 Aug;12(8):2253-62 [PMID: 16968165]
  8. Exp Cell Res. 1998 Jan 10;238(1):265-72 [PMID: 9457080]
  9. J Biomech. 2001 Jul;34(7):941-9 [PMID: 11410177]
  10. Osteoarthritis Cartilage. 2001;9 Suppl A:S69-75 [PMID: 11680692]
  11. Dev Cell. 2001 Aug;1(2):277-90 [PMID: 11702786]
  12. Biotechnol Bioeng. 2008 Mar 1;99(4):986-95 [PMID: 17929321]
  13. Stem Cells. 2004;22(3):313-23 [PMID: 15153608]
  14. J Vis Exp. 2013 Apr 25;(74):e50387 [PMID: 23644779]
  15. Tissue Eng Part A. 2010 Feb;16(2):523-33 [PMID: 19715387]
  16. J Vis Exp. 2012 Oct 27;(68):e4229 [PMID: 23128296]
  17. Tissue Eng Part A. 2009 Oct;15(10):2937-45 [PMID: 19290804]
  18. Osteoarthritis Cartilage. 2002 Jun;10(6):432-63 [PMID: 12056848]
  19. Biochem Biophys Res Commun. 2007 Jul 27;359(2):311-6 [PMID: 17543281]
  20. J Mech Behav Biomed Mater. 2011 Oct;4(7):1257-65 [PMID: 21783134]
  21. Curr Opin Cell Biol. 2006 Dec;18(6):723-9 [PMID: 17049221]
  22. Osteoarthritis Cartilage. 2013 Dec;21(12):1895-903 [PMID: 24025318]
  23. J Biomech Eng. 2003 Oct;125(5):602-14 [PMID: 14618919]
  24. J Orthop Res. 2009 May;27(5):612-9 [PMID: 18985688]
  25. Biophys J. 2004 May;86(5):3269-83 [PMID: 15111440]
  26. Eur Biophys J. 2007 Apr;36(4-5):539-68 [PMID: 17318529]
  27. J Biomech Eng. 2012 Mar;134(3):031001 [PMID: 22482681]
  28. Biophys J. 2010 Jun 16;98(12):2848-56 [PMID: 20550897]
  29. J Orthop Res. 2005 Mar;23(2):425-32 [PMID: 15734258]
  30. Biotechnol Prog. 2009 Nov-Dec;25(6):1650-9 [PMID: 19806634]
  31. Osteoarthritis Cartilage. 2005 Oct;13(10):845-53 [PMID: 16129630]
  32. J Orthop Res. 2000 Sep;18(5):790-9 [PMID: 11117302]
  33. J Biomech. 2008;41(2):454-64 [PMID: 17825308]
  34. Cell Physiol Biochem. 2004;14(4-6):311-24 [PMID: 15319535]
  35. J Cell Sci. 1995 Apr;108 ( Pt 4):1497-508 [PMID: 7615670]
  36. J Orthop Res. 2005 Nov;23(6):1383-9 [PMID: 15936917]
  37. Biorheology. 2006;43(3,4):497-507 [PMID: 16912421]
  38. Microsc Microanal. 2007 Feb;13(1):55-64 [PMID: 17234038]
  39. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19172-7 [PMID: 23115336]
  40. Biotechnol Prog. 2011 Mar-Apr;27(2):451-9 [PMID: 21290617]
  41. J Tissue Eng Regen Med. 2011 Oct;5(9):673-83 [PMID: 21953865]
  42. J Biomech Eng. 2000 Jun;122(3):252-60 [PMID: 10923293]
  43. Birth Defects Res C Embryo Today. 2003 May;69(2):93-101 [PMID: 12955855]
  44. Tissue Eng Part A. 2009 Nov;15(11):3461-72 [PMID: 19432533]
  45. Tissue Eng Part A. 2015 Jan;21(1-2):257-66 [PMID: 25060524]
  46. Tissue Eng. 2007 Apr;13(4):659-66 [PMID: 17371203]
  47. Tissue Eng Part A. 2009 Oct;15(10):3025-36 [PMID: 19335060]
  48. J Orthop Res. 2003 May;21(3):451-7 [PMID: 12706017]
  49. Arthritis Rheum. 2006 Apr;54(4):1222-32 [PMID: 16572454]
  50. Colloids Surf B Biointerfaces. 2006 Aug 1;51(1):62-70 [PMID: 16814529]
  51. Arthritis Rheum. 2008 Jan;58(1):26-35 [PMID: 18163497]
  52. Biomaterials. 2012 Sep;33(26):6042-51 [PMID: 22677190]
  53. Biomater Sci. 2013 Jul 4;1(7):745-752 [PMID: 32481828]
  54. Artif Organs. 2012 Dec;36(12):1065-71 [PMID: 22882542]
  55. Proc Inst Mech Eng H. 2012 Dec;226(12):899-910 [PMID: 23636953]
  56. J Biomech. 2014 Jun 27;47(9):2115-21 [PMID: 24377681]
  57. Tissue Eng. 1998 Winter;4(4):415-28 [PMID: 9916173]
  58. J Biomech. 2008;41(3):541-8 [PMID: 18054362]
  59. Tissue Eng Part A. 2013 Jan;19(1-2):299-306 [PMID: 22871265]
  60. Tissue Eng. 2006 May;12(5):1337-44 [PMID: 16771646]
  61. Osteoarthritis Cartilage. 2006 Jun;14(6):571-9 [PMID: 16478668]
  62. J Biomech. 2010 Aug 10;43(11):2164-73 [PMID: 20537336]
  63. J Cell Physiol. 2007 Jun;211(3):682-91 [PMID: 17238135]
  64. Tissue Eng. 2003 Dec;9(6):1301-12 [PMID: 14670117]
  65. Proc Inst Mech Eng H. 2007 Jul;221(5):499-507 [PMID: 17822152]
  66. Tissue Eng. 2006 Jun;12(6):1419-28 [PMID: 16846340]
  67. Arthritis Rheum. 2003 Feb;48(2):418-29 [PMID: 12571852]
  68. Arthritis Rheum. 2003 Oct;48(10):2865-72 [PMID: 14558092]
  69. Osteoarthritis Cartilage. 2006 Apr;14(4):323-30 [PMID: 16324852]
  70. J Bone Joint Surg Br. 1997 Jan;79(1):109-13 [PMID: 9020457]
  71. Exp Cell Res. 2001 Aug 15;268(2):189-200 [PMID: 11478845]
  72. Tissue Eng. 2003 Aug;9(4):597-611 [PMID: 13678439]
  73. Biochem Biophys Res Commun. 2004 Jul 30;320(3):914-9 [PMID: 15240135]
  74. Tissue Eng Part A. 2010 May;16(5):1781-90 [PMID: 20028219]
  75. Osteoarthritis Cartilage. 2007 Sep;15(9):1025-33 [PMID: 17498976]

Grants

  1. T32 GM008336/NIGMS NIH HHS

MeSH Term

Bioreactors
Cartilage, Articular
Cells, Cultured
Humans
Microscopy, Atomic Force
Pressure
Tissue Engineering
Transforming Growth Factor beta3

Chemicals

Transforming Growth Factor beta3

Word Cloud

Created with Highcharts 10.0.0ACcartilagetissuetissuesOHPTGF-��3Young'smoduliArticularcellularcapableengineeringvivogrowthbioreactorculturesengineeredusingAFMmechanicslowestvolumetricdensitysuppliedbloodnerveresultinglimitedabilityself-repairuponinjurytreatmentfullyrestoringdamagedinvestigatedemphasisfieldengineerfunctionalvitrobioreactorsmimickingenvi-ronmentsrequiredappropriatedifferentiationsteptowardshumanadipose-derivedstemcellsdifferentiateduniquecentrifugaloscillatinghydrostaticpressuresupplytransformingfactorbeta3mimicenvironmentsStaticmicromasspelletusedcontrolsSincewithstandingabsorbingloadsamongmainfunctionsmechanicalpropertiesassayedatomicforcemicroscopycontrolledindentationdepth100nmelasticityquantifiedmodelingforce-indentationdataHertzmodelcontactfoundexposurecausesconstructs45-foldhighercomparedstaticAdditionincreasessamples19-foldbringingwithin706%valuesestimatednativeresultsimplyactsynergisticallyimproveNanomechanicsEngineeredCartilage:SynergisticInfluencesTransformingGrowthFactor-��3OscillatingPressure

Similar Articles

Cited By