Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells.

Adam Collinson, Amanda J Collier, Natasha P Morgan, Arnold R Sienerth, Tamir Chandra, Simon Andrews, Peter J Rugg-Gunn
Author Information
  1. Adam Collinson: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
  2. Amanda J Collier: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
  3. Natasha P Morgan: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
  4. Arnold R Sienerth: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
  5. Tamir Chandra: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
  6. Simon Andrews: Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK.
  7. Peter J Rugg-Gunn: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK. Electronic address: peter.rugg-gunn@babraham.ac.uk.

Abstract

Through the histone methyltransferase EZH2, the Polycomb complex PRC2 mediates H3K27me3 and is associated with transcriptional repression. PRC2 regulates cell-fate decisions in model organisms; however, its role in regulating cell differentiation during human embryogenesis is unknown. Here, we report the characterization of EZH2-deficient human embryonic stem cells (hESCs). H3K27me3 was lost upon EZH2 deletion, identifying an essential requirement for EZH2 in methylating H3K27 in hESCs, in contrast to its non-essential role in mouse ESCs. Developmental regulators were derepressed in EZH2-deficient hESCs, and single-cell analysis revealed an unexpected acquisition of lineage-restricted transcriptional programs. EZH2-deficient hESCs show strongly reduced self-renewal and proliferation, thereby identifying a more severe phenotype compared to mouse ESCs. EZH2-deficient hESCs can initiate differentiation toward developmental lineages; however, they cannot fully differentiate into mature specialized tissues. Thus, EZH2 is required for stable ESC self-renewal, regulation of transcriptional programs, and for late-stage differentiation in this model of early human development.

Keywords

References

  1. Genes Dev. 2015 Jun 15;29(12):1239-55 [PMID: 26109048]
  2. Genes Dev. 2010 Feb 1;24(3):265-76 [PMID: 20123906]
  3. Mol Cell. 2014 Jan 9;53(1):49-62 [PMID: 24289921]
  4. Cell Stem Cell. 2011 Feb 4;8(2):228-40 [PMID: 21295278]
  5. EMBO J. 2014 Oct 1;33(19):2157-70 [PMID: 25107471]
  6. Nat Genet. 2015 Oct;47(10):1179-86 [PMID: 26323060]
  7. Nat Struct Mol Biol. 2013 Oct;20(10):1147-55 [PMID: 24096405]
  8. Development. 2015 Feb 15;142(4):607-19 [PMID: 25670788]
  9. Nature. 2011 Jan 20;469(7330):343-9 [PMID: 21248841]
  10. Cell. 2013 May 23;153(5):1134-48 [PMID: 23664764]
  11. Nat Genet. 2015 May;47(5):469-78 [PMID: 25822089]
  12. Mol Cell Proteomics. 2010 May;9(5):838-50 [PMID: 20150217]
  13. Development. 2011 Mar;138(5):861-71 [PMID: 21270052]
  14. Nature. 2006 May 18;441(7091):349-53 [PMID: 16625203]
  15. Mol Cell. 2004 Jul 2;15(1):57-67 [PMID: 15225548]
  16. Genes Dev. 2007 Mar 1;21(5):525-30 [PMID: 17344414]
  17. Mol Cell Biol. 2007 Mar;27(6):2014-26 [PMID: 17210640]
  18. Genes Dev. 2002 Nov 15;16(22):2893-905 [PMID: 12435631]
  19. Mol Cell. 2008 Nov 21;32(4):491-502 [PMID: 19026780]
  20. Cell. 2002 Oct 18;111(2):185-96 [PMID: 12408863]
  21. Cell. 2006 Apr 21;125(2):315-26 [PMID: 16630819]
  22. Curr Opin Cell Biol. 2008 Apr;20(2):201-7 [PMID: 18291635]
  23. Curr Opin Genet Dev. 2009 Apr;19(2):150-8 [PMID: 19345089]
  24. Cell. 2013 May 23;153(5):1149-63 [PMID: 23664763]
  25. Cell. 2006 Apr 21;125(2):301-13 [PMID: 16630818]
  26. Mol Cell. 2014 Aug 7;55(3):347-60 [PMID: 24999238]
  27. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9290-5 [PMID: 18579772]
  28. EMBO J. 2004 Oct 13;23 (20):4061-71 [PMID: 15385962]
  29. Cell Stem Cell. 2007 Sep 13;1(3):299-312 [PMID: 18371364]
  30. Curr Opin Genet Dev. 2015 Oct;34:35-45 [PMID: 26291026]
  31. Nature. 2002 Oct 10;419(6907):624-9 [PMID: 12374981]
  32. Nature. 2007 Aug 2;448(7153):553-60 [PMID: 17603471]
  33. Cell Stem Cell. 2010 Sep 3;7(3):288-98 [PMID: 20804966]
  34. Stem Cells. 2008 Jun;26(6):1496-505 [PMID: 18403752]
  35. Mol Cell Biol. 2007 May;27(10 ):3769-79 [PMID: 17339329]
  36. Mol Cell Biol. 2001 Jul;21(13):4330-6 [PMID: 11390661]
  37. Nucleic Acids Res. 2010 Aug;38(15):4958-69 [PMID: 20385584]
  38. Cell. 2002 Oct 18;111(2):197-208 [PMID: 12408864]
  39. Genes Dev. 2016 Feb 15;30(4):421-33 [PMID: 26883361]
  40. Science. 2002 Nov 1;298(5595):1039-43 [PMID: 12351676]
  41. Nature. 2004 Oct 14;431(7010):873-8 [PMID: 15386022]
  42. Nat Biotechnol. 2013 Sep;31(9):827-32 [PMID: 23873081]
  43. Curr Opin Genet Dev. 2016 Feb;36:50-8 [PMID: 27151431]
  44. Cell Stem Cell. 2011 Apr 8;8(4):363-9 [PMID: 21474100]
  45. Development. 2015 Jan 1;142(1):9-12 [PMID: 25516964]
  46. Cell Stem Cell. 2007 Sep 13;1(3):286-98 [PMID: 18371363]
  47. Cell. 2013 Sep 26;155(1):135-47 [PMID: 24074866]
  48. Genes Dev. 2006 May 1;20(9):1123-36 [PMID: 16618801]
  49. EMBO Rep. 2005 Apr;6(4):348-53 [PMID: 15776017]
  50. Cell Stem Cell. 2010 Sep 3;7(3):299-313 [PMID: 20804967]
  51. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  52. Mol Cell. 2008 Nov 21;32(4):503-18 [PMID: 19026781]
  53. Cell Stem Cell. 2008 Aug 7;3(2):182-95 [PMID: 18682240]
  54. EMBO J. 2003 Oct 15;22(20):5323-35 [PMID: 14532106]
  55. Mol Cell. 2010 Sep 24;39(6):886-900 [PMID: 20864036]
  56. Cell. 2011 Feb 4;144(3):439-52 [PMID: 21295703]
  57. PLoS Genet. 2008 Oct;4(10):e1000242 [PMID: 18974828]
  58. Elife. 2015 Nov 09;4:null [PMID: 26551560]
  59. Development. 2009 Nov;136(21):3531-42 [PMID: 19820181]
  60. Development. 1995 Feb;121(2):273-85 [PMID: 7768172]
  61. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1531-6 [PMID: 21205896]
  62. Cell Stem Cell. 2009 Jun 5;4(6):487-92 [PMID: 19497275]
  63. Nat Cell Biol. 2006 May;8(5):532-8 [PMID: 16570078]
  64. Cell. 2015 Jul 30;162(3):564-79 [PMID: 26232226]

Grants

  1. MC_PC_12009/Medical Research Council
  2. BBS/E/B/000C0402/Biotechnology and Biological Sciences Research Council
  3. MR/J003808/1/Medical Research Council
  4. WT093736/Wellcome Trust

MeSH Term

Animals
Cell Differentiation
Cell Proliferation
Cell Self Renewal
Enhancer of Zeste Homolog 2 Protein
Human Embryonic Stem Cells
Humans
Jumonji Domain-Containing Histone Demethylases
Mice
Polycomb Repressive Complex 2
Polycomb-Group Proteins
Sequence Deletion
Single-Cell Analysis

Chemicals

Polycomb-Group Proteins
Jumonji Domain-Containing Histone Demethylases
Kdm6b protein, mouse
EZH2 protein, human
Enhancer of Zeste Homolog 2 Protein
Polycomb Repressive Complex 2