The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq.

Quin F Wills, Esther Mellado-Gomez, Rory Nolan, Damien Warner, Eshita Sharma, John Broxholme, Benjamin Wright, Helen Lockstone, William James, Mark Lynch, Michael Gonzales, Jay West, Anne Leyrat, Sergi Padilla-Parra, Sarah Filippi, Chris Holmes, Michael D Moore, Rory Bowden
Author Information
  1. Quin F Wills: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK. qilin@well.ox.ac.uk.
  2. Esther Mellado-Gomez: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  3. Rory Nolan: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  4. Damien Warner: Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
  5. Eshita Sharma: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  6. John Broxholme: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  7. Benjamin Wright: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  8. Helen Lockstone: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  9. William James: Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
  10. Mark Lynch: Fluidigm Corporation, 7000 Shoreline Ct Ste 100, South San Francisco, CA, 94080-7603, USA.
  11. Michael Gonzales: Fluidigm Corporation, 7000 Shoreline Ct Ste 100, South San Francisco, CA, 94080-7603, USA.
  12. Jay West: Fluidigm Corporation, 7000 Shoreline Ct Ste 100, South San Francisco, CA, 94080-7603, USA.
  13. Anne Leyrat: Fluidigm Corporation, 7000 Shoreline Ct Ste 100, South San Francisco, CA, 94080-7603, USA.
  14. Sergi Padilla-Parra: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  15. Sarah Filippi: Department of Statistics, University of Oxford, Oxford, OX3 3LB, UK.
  16. Chris Holmes: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK.
  17. Michael D Moore: Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK. kenny.moore@path.ox.ac.uk.
  18. Rory Bowden: Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, OX3 7BN, UK. rbowden@well.ox.ac.uk.

Abstract

BACKGROUND: Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages.
RESULTS: We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation.
CONCLUSION: As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.

Keywords

References

  1. Nat Immunol. 2015 Mar;16(3):229-36 [PMID: 25689443]
  2. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  3. F1000Prime Rep. 2014 Mar 03;6:13 [PMID: 24669294]
  4. J Immunol. 2010 Jul 1;185(1):605-14 [PMID: 20498354]
  5. Cell. 2013 Sep 12;154(6):1380-9 [PMID: 23992846]
  6. Nucleic Acids Res. 2013 May 1;41(10):e108 [PMID: 23558742]
  7. Nat Med. 2012 Nov;18(11):1682-7 [PMID: 22972397]
  8. J Allergy Clin Immunol. 2015 Jul;136(1):51-58.e10 [PMID: 25592985]
  9. Nat Immunol. 2015 Jun;16(6):546-53 [PMID: 25988886]
  10. Blood. 2008 Dec 1;112(12):4699-711 [PMID: 18799727]
  11. Genes Cells. 2014 Mar;19(3):209-24 [PMID: 24450587]
  12. Ann Rheum Dis. 2015 Mar;74(3):e17 [PMID: 24445253]
  13. PLoS One. 2013 Aug 12;8(8):e71098 [PMID: 23951090]
  14. Front Immunol. 2014 Nov 28;5:614 [PMID: 25506346]
  15. Mol Cancer. 2015 Sep 29;14:176 [PMID: 26416562]
  16. Nature. 1993 Mar 4;362(6415):59-62 [PMID: 8446170]
  17. Nat Genet. 2005 Nov;37(11):1181-6 [PMID: 16254564]
  18. BMC Bioinformatics. 2014 Nov 21;15:367 [PMID: 25413493]
  19. Trends Microbiol. 2016 May;24(5):345-55 [PMID: 26875617]
  20. Cell Rep. 2013 Apr 25;3(4):1036-43 [PMID: 23602554]
  21. Hum Mol Genet. 2009 Oct 15;18(R2):R130-6 [PMID: 19808788]
  22. N Engl J Med. 2004 Mar 25;350(13):1353-6 [PMID: 14999088]
  23. Exp Hematol. 2015 Oct;43(10):838-848.e3 [PMID: 26101162]
  24. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  25. Haematologica. 2015 Feb;100(2):157-66 [PMID: 25381126]
  26. Bioinformatics. 2012 Jun 1;28(11):1530-2 [PMID: 22539670]
  27. Gene Ther. 2006 Dec;13(23):1645-56 [PMID: 16871233]
  28. Nat Immunol. 2015 Nov;16(11):1142-52 [PMID: 26414765]
  29. Cochrane Database Syst Rev. 2009 Jan 21;(1):CD005121 [PMID: 19160248]
  30. Blood. 2014 Feb 13;123(7):1021-31 [PMID: 24335234]
  31. J Neurovirol. 2015 Jun;21(3):235-41 [PMID: 25933548]
  32. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  33. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  34. Bioinformatics. 2010 Apr 1;26(7):979-81 [PMID: 20338898]
  35. J Embryol Exp Morphol. 1982 Apr;68:175-98 [PMID: 7108421]
  36. Genes Cancer. 2014 Apr;5(1-2):15-21 [PMID: 24955214]
  37. Nat Protoc. 2013 Nov;8(11):2281-308 [PMID: 24157548]
  38. Sci Rep. 2015 Jul 30;5:12524 [PMID: 26224331]
  39. BMC Bioinformatics. 2014 Jun 12;15:182 [PMID: 24925680]
  40. Exp Hematol. 2008 Sep;36(9):1167-75 [PMID: 18550257]
  41. Cell Host Microbe. 2016 Mar 9;19(3):304-10 [PMID: 26962941]
  42. Retrovirology. 2015 May 16;12:42 [PMID: 25980942]
  43. Curr Opin Virol. 2013 Dec;3(6):692-9 [PMID: 24246762]
  44. Leuk Res. 2008 Jul;32(7):1124-40 [PMID: 18177935]

Grants

  1. MR/M00919X/1/Medical Research Council
  2. /Biotechnology and Biological Sciences Research Council
  3. MC_UP_A390_1107/Medical Research Council
  4. 090532/Z/09/Z/Wellcome Trust
  5. MC_PC_14131/Medical Research Council

MeSH Term

Gene Knockout Techniques
Gene-Environment Interaction
Humans
Macrophages
Phenotype
SAM Domain and HD Domain-Containing Protein 1
Sequence Analysis, RNA
Single-Cell Analysis

Chemicals

SAM Domain and HD Domain-Containing Protein 1