Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity.

Katharina Richard, Barbara J Mann, Aiping Qin, Eileen M Barry, Robert K Ernst, Stefanie N Vogel
Author Information
  1. Katharina Richard: Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
  2. Barbara J Mann: Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
  3. Aiping Qin: Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
  4. Eileen M Barry: Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA.
  5. Robert K Ernst: Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA.
  6. Stefanie N Vogel: Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA svogel@som.umaryland.edu.

Abstract

, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated LVS or fully virulent Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti- IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-��)-secreting activated helper T cells, IFN-�� production, and the ability of splenocytes to control intramacrophage LVS replication Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. Schu S4 challenge (to ���60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.

Keywords

References

  1. Eur Respir J. 2003 Feb;21(2):361-73 [PMID: 12608453]
  2. Am J Med Sci. 1994 Aug;308(2):83-7 [PMID: 8042659]
  3. Infect Immun. 2006 Dec;74(12):6730-8 [PMID: 16982824]
  4. Science. 1989 Sep 22;245(4924):1371-4 [PMID: 2781283]
  5. Nat Immunol. 2010 May;11(5):395-402 [PMID: 20351692]
  6. BMC Infect Dis. 2010 Jan 18;10:10 [PMID: 20082697]
  7. Infect Immun. 2007 May;75(5):2152-62 [PMID: 17296747]
  8. J Leukoc Biol. 2011 Oct;90(4):787-97 [PMID: 21750122]
  9. Infect Immun. 2016 Mar 24;84(4):1054-61 [PMID: 26810039]
  10. Eur J Immunol. 2012 Nov;42(11):2875-80 [PMID: 22806568]
  11. J Immunol Methods. 2006 Oct 20;316(1-2):84-96 [PMID: 17010367]
  12. Hum Vaccin. 2009 Dec;5(12):832-8 [PMID: 19923904]
  13. Expert Rev Vaccines. 2009 Jul;8(7):877-85 [PMID: 19538114]
  14. Clin Vaccine Immunol. 2009 Apr;16(4):444-52 [PMID: 19211773]
  15. Curr Protoc Immunol. 2011 Apr;Chapter 19:Unit 19.14 [PMID: 21462168]
  16. Vaccine. 2008 Dec 2;26(51):6630-8 [PMID: 18845199]
  17. Infect Immun. 2008 Oct;76(10):4479-88 [PMID: 18644878]
  18. J Immunol. 2008 Sep 15;181(6):4159-67 [PMID: 18768873]
  19. Microb Pathog. 1992 Nov;13(5):417-21 [PMID: 1297917]
  20. Infect Immun. 1992 Jan;60(1):84-9 [PMID: 1729199]
  21. J Am Chem Soc. 2009 Apr 22;131(15):5471-7 [PMID: 19323555]
  22. Clin Vaccine Immunol. 2013 Oct;20(10):1531-40 [PMID: 23925884]
  23. PLoS One. 2008 Jun 25;3(6):e2487 [PMID: 18575611]
  24. Vaccine. 2001 Aug 14;19(31):4465-72 [PMID: 11483272]
  25. Microb Pathog. 2004 Oct;37(4):185-91 [PMID: 15458779]
  26. Vaccine. 1995 Feb;13(3):261-7 [PMID: 7631511]
  27. Infect Immun. 1992 Mar;60(3):817-25 [PMID: 1541555]
  28. Microbes Infect. 2011 May;13(5):447-56 [PMID: 21277990]
  29. J Immunol. 2008 May 15;180(10):6885-91 [PMID: 18453609]
  30. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9771-6 [PMID: 20457908]
  31. Vaccine. 2012 Jul 13;30(33):4977-82 [PMID: 22652404]
  32. PLoS One. 2012;7(11):e50460 [PMID: 23209745]
  33. Infect Immun. 2006 May;74(5):2809-16 [PMID: 16622218]
  34. PLoS Pathog. 2015 Mar 13;11(3):e1004706 [PMID: 25768794]
  35. Infect Immun. 2008 Aug;76(8):3664-71 [PMID: 18505805]
  36. J Exp Med. 2007 May 14;204(5):987-94 [PMID: 17452523]
  37. Infect Immun. 2011 Apr;79(4):1770-8 [PMID: 21282410]
  38. Infect Immun. 1992 Jul;60(7):2855-62 [PMID: 1612751]
  39. PLoS One. 2013;8(3):e58513 [PMID: 23554897]
  40. J Adolesc Health. 2012 Feb;50(2):187-94 [PMID: 22265115]
  41. Immunol Cell Biol. 2015 Aug;93(7):641-52 [PMID: 25776843]
  42. PLoS Pathog. 2012 Jan;8(1):e1002494 [PMID: 22275868]
  43. Adv Colloid Interface Sci. 2006 Sep 13;121(1-3):51-75 [PMID: 16769012]
  44. Infect Immun. 2007 Aug;75(8):4127-37 [PMID: 17517865]
  45. Nat Immunol. 2010 May;11(5):385-93 [PMID: 20351693]
  46. Bacteriol Rev. 1961 Sep;25(3):262-7 [PMID: 16350172]
  47. FEMS Immunol Med Microbiol. 1996 Mar;13(3):245-7 [PMID: 8861037]
  48. Microb Pathog. 2003 Jan;34(1):39-45 [PMID: 12620383]
  49. Eur J Immunol. 1991 Apr;21(4):1081-4 [PMID: 1902176]
  50. J Infect Dis. 2007 Jul 1;196(1):134-7 [PMID: 17538893]
  51. Int Immunol. 2006 May;18(5):785-95 [PMID: 16574669]
  52. Langmuir. 2006 Jul 18;22(15):6461-4 [PMID: 16830982]
  53. J Immunol. 2013 Aug 1;191(3):1276-86 [PMID: 23817430]
  54. Clin Vaccine Immunol. 2014 Feb;21(2):227-33 [PMID: 24351753]
  55. J Immunol. 2011 Sep 1;187(5):2595-601 [PMID: 21813776]
  56. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3609-18 [PMID: 27274048]
  57. Infect Immun. 2000 Apr;68(4):1988-96 [PMID: 10722593]
  58. Clin Vaccine Immunol. 2014 Feb;21(2):212-26 [PMID: 24351755]
  59. J Immunol. 2006 Jun 1;176(11):6888-99 [PMID: 16709849]
  60. Rev Infect Dis. 1987 Sep-Oct;9 Suppl 5:S512-6 [PMID: 3317747]
  61. Vaccine. 2009 Aug 27;27(39):5299-306 [PMID: 19616492]
  62. Immunol Ser. 1994;60:349-61 [PMID: 8251580]
  63. Hum Vaccin. 2009 May;5(5):332-40 [PMID: 19221517]
  64. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5382-7 [PMID: 22421134]

Grants

  1. R01 AI102966/NIAID NIH HHS
  2. R21 AI101691/NIAID NIH HHS
  3. R56 AI018797/NIAID NIH HHS
  4. T32 AI095190/NIAID NIH HHS

MeSH Term

Adjuvants, Immunologic
Animals
Antibodies, Bacterial
Bacterial Vaccines
Bronchoalveolar Lavage Fluid
Disease Models, Animal
Female
Francisella tularensis
Immunity, Cellular
Immunity, Humoral
Immunoglobulin A
Immunoglobulin G
Interferon-gamma
Lipid A
Macrophages
Mice, Inbred C57BL
Nanoparticles
Survival Analysis
T-Lymphocytes
Tularemia
Vaccines, Subunit

Chemicals

Adjuvants, Immunologic
Antibodies, Bacterial
Bacterial Vaccines
Immunoglobulin A
Immunoglobulin G
Lipid A
Vaccines, Subunit
Interferon-gamma
monophosphoryl lipid A

Word Cloud

Created with Highcharts 10.0.0SchuiS4pimmunizationLVSchallengenvaccineLVS-Vmice/iLVS-V+MPLsignificantlytularensisfullyvirulentstrainscatanionicsurfactantS4-VprotectionheterologoustitersIgGincreasedmonophosphoryllipidimmuneseraalsoActiveIFN-��subunitFrancisellabacterialbiothreatagentapprovedUnitedStatesPreviouslyshowedincorporatinglysatespartiallyattenuatedvesicleVnanoparticlesrespectivelyprotectedintraperitonealHoweverachievedpartialintranasalevenemployingprime-booststrategiesnowextendfindingsshowelicitedsimilarlyhighanti-addingMPLnontoxicToll-likereceptor4TLR4adjuvantincludedseveralUSFDA-approvedvaccinesdetectedantigenspassivetransfernaivedelayedtimedeathsubcutaneousscfrequencygammainterferon-secretingactivatedhelperTcellsproductionabilitysplenocytescontrolintramacrophagereplicationviarouteselevatedIgAlevelsbronchoalveolarlavagefluidenhanced���60%datarepresentsignificantstepdevelopmenthighlytypeMonophosphorylLipidEnhancesEfficacyLVS-CatanionicNanoparticleSubunitVaccineFChallengeAugmentingHumoralCellularImmunitynanoparticletularemia

Similar Articles

Cited By