Collagen synthesis disruption and downregulation of core elements of TGF-β, Hippo, and Wnt pathways in keratoconus corneas.

Michal Kabza, Justyna A Karolak, Malgorzata Rydzanicz, Michał W Szcześniak, Dorota M Nowak, Barbara Ginter-Matuszewska, Piotr Polakowski, Rafal Ploski, Jacek P Szaflik, Marzena Gajecka
Author Information
  1. Michal Kabza: Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.
  2. Justyna A Karolak: Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.
  3. Malgorzata Rydzanicz: Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
  4. Michał W Szcześniak: Department of Bioinformatics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland.
  5. Dorota M Nowak: Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.
  6. Barbara Ginter-Matuszewska: Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland. ORCID
  7. Piotr Polakowski: Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland.
  8. Rafal Ploski: Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
  9. Jacek P Szaflik: Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland.
  10. Marzena Gajecka: Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.

Abstract

To understand better the factors contributing to keratoconus (KTCN), we performed comprehensive transcriptome profiling of human KTCN corneas for the first time using an RNA-Seq approach. Twenty-five KTCN and 25 non-KTCN corneas were enrolled in this study. After RNA extraction, total RNA libraries were prepared and sequenced. The discovery RNA-Seq analysis (in eight KTCN and eight non-KTCN corneas) was conducted first, after which the replication RNA-Seq experiment was performed on a second set of samples (17 KTCN and 17 non-KTCN corneas). Over 82% of the genes and almost 75% of the transcripts detected as differentially expressed in KTCN and non-KTCN corneas were confirmed in the replication study using another set of samples. We used these differentially expressed genes to generate a network of KTCN-deregulated genes. We found an extensive disruption of collagen synthesis and maturation pathways, as well as downregulation of the core elements of the TGF-β, Hippo, and Wnt signaling pathways influencing corneal organization. This first comprehensive transcriptome profiling of human KTCN corneas points further to a complex etiology of KTCN.

References

  1. Mol Vis. 2011 Mar 30;17:827-43 [PMID: 21527998]
  2. J Cell Commun Signal. 2014 Jun;8(2):113-24 [PMID: 24604397]
  3. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  4. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  5. Eur J Hum Genet. 2012 Apr;20(4):389-97 [PMID: 22045297]
  6. Mol Vis. 2015 May 21;21:577-88 [PMID: 26015770]
  7. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(8):3685-97 [PMID: 27403997]
  8. Cytokine Growth Factor Rev. 1997 Sep;8(3):171-9 [PMID: 9462483]
  9. J Proteomics. 2013 Jul 11;87:122-31 [PMID: 23727491]
  10. Exp Eye Res. 2013 Oct;115:1-12 [PMID: 23792172]
  11. Nature. 2012 Mar 28;483(7391):531-3 [PMID: 22460880]
  12. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  13. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  14. Am J Hum Genet. 2011 Nov 11;89(5):628-33 [PMID: 21996275]
  15. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  16. Invest Ophthalmol Vis Sci. 2011 Oct 31;52(11):8514-9 [PMID: 22003120]
  17. Hum Mol Genet. 2002 May 1;11(9):1029-36 [PMID: 11978762]
  18. J Ophthalmol. 2014;2014:641708 [PMID: 25254113]
  19. J Funct Biomater. 2015 Jun 18;6(2):422-38 [PMID: 26096146]
  20. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  21. Invest Ophthalmol Vis Sci. 2015 Dec;56(13):7687-90 [PMID: 26641546]
  22. Genome Med. 2011 Nov 22;3(11):74 [PMID: 22113004]
  23. Nucleic Acids Res. 2013 Jan;41(Database issue):D793-800 [PMID: 23143270]
  24. Curr Eye Res. 2004 Jun;28(6):373-9 [PMID: 15512944]
  25. Surv Ophthalmol. 1998 Jan-Feb;42(4):297-319 [PMID: 9493273]
  26. Acta Ophthalmol. 2015 Dec;93(8):767-73 [PMID: 26278201]
  27. Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1531-9 [PMID: 19011015]
  28. Cornea. 2005 Aug;24(6):661-8 [PMID: 16015083]
  29. F1000Prime Rep. 2013 Jun 03;5:17 [PMID: 23755364]
  30. Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2466-76 [PMID: 12766045]
  31. Invest Ophthalmol Vis Sci. 2005 Jun;46(6):1948-56 [PMID: 15914608]
  32. Mol Vis. 2015 Jan 12;21:12-25 [PMID: 25593510]
  33. Bioinformatics. 2011 Sep 1;27(17):2325-9 [PMID: 21697122]
  34. Ophthalmic Genet. 2016;37(1):37-43 [PMID: 24940934]
  35. Cornea. 2000 Nov;19(6):813-6 [PMID: 11095055]
  36. Cell Tissue Res. 2016 Feb;363(2):337-49 [PMID: 26205093]
  37. Eye (Lond). 2015 Jul;29(7):843-59 [PMID: 25931166]
  38. Nat Rev Drug Discov. 2011 Aug 31;10(9):712 [PMID: 21892149]
  39. Nat Biotechnol. 2011 Nov 13;30(1):99-104 [PMID: 22081020]
  40. Am J Ophthalmol. 2011 May;151(5):752-759.e2 [PMID: 21310385]
  41. Invest Ophthalmol Vis Sci. 2011 Aug 03;52(9):6181-91 [PMID: 21676910]
  42. Bioinformatics. 2014 Feb 1;30(3):301-4 [PMID: 24319002]
  43. Invest Ophthalmol Vis Sci. 2011 Jul 01;52(7):4734-41 [PMID: 21357396]
  44. Genes Dev. 2013 Feb 15;27(4):355-71 [PMID: 23431053]
  45. Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2618-28 [PMID: 27258434]
  46. Genome Biol. 2014;15(12):550 [PMID: 25516281]

MeSH Term

Case-Control Studies
Collagen
Cornea
Down-Regulation
Hippo Signaling Pathway
Humans
Keratoconus
Protein Serine-Threonine Kinases
Transcriptome
Transforming Growth Factor beta
Wnt Signaling Pathway

Chemicals

Transforming Growth Factor beta
Collagen
Protein Serine-Threonine Kinases