On the relationships in rhesus macaques between chronic ethanol consumption and the brain transcriptome.

Ovidiu D Iancu, Alexander Colville, Nicole A R Walter, Priscila Darakjian, Denesa L Oberbeck, James B Daunais, Christina L Zheng, Robert P Searles, Shannon K McWeeney, Kathleen A Grant, Robert Hitzemann
Author Information
  1. Ovidiu D Iancu: Oregon Health and Science University, Portland, OR, USA.
  2. Alexander Colville: Oregon Health and Science University, Portland, OR, USA.
  3. Nicole A R Walter: Oregon Health and Science University, Portland, OR, USA.
  4. Priscila Darakjian: Oregon Health and Science University, Portland, OR, USA.
  5. Denesa L Oberbeck: Oregon Health and Science University, Portland, OR, USA. ORCID
  6. James B Daunais: Wake Forest School of Medicine, Winston-Salem, NC, USA.
  7. Christina L Zheng: Oregon Health and Science University, Portland, OR, USA.
  8. Robert P Searles: Oregon Health and Science University, Portland, OR, USA.
  9. Shannon K McWeeney: Oregon Health and Science University, Portland, OR, USA.
  10. Kathleen A Grant: Oregon Health and Science University, Portland, OR, USA.
  11. Robert Hitzemann: Oregon Health and Science University, Portland, OR, USA.

Abstract

This is the first description of the relationship between chronic ethanol self-administration and the brain transcriptome in a non-human primate (rhesus macaque). Thirty-one male animals self-administered ethanol on a daily basis for over 12 months. Gene transcription was quantified with RNA-Seq in the central nucleus of the amygdala (CeA) and cortical Area 32. We constructed coexpression and cosplicing networks, and we identified areas of preservation and areas of differentiation between regions and network types. Correlations between intake and transcription included largely distinct gene sets and annotation categories across brain regions and between expression and splicing; positive and negative correlations were also associated with distinct annotation groups. Membrane, synaptic and splicing annotation categories were over-represented in the modules (gene clusters) enriched in positive correlations (CeA); our cosplicing analysis further identified the genes affected only at the exon inclusion level. In the CeA coexpression network, we identified Rab6b, Cdk18 and Igsf21 among the intake-correlated hubs, while in the Area 32, we identified a distinct hub set that included Ppp3r1 and Myeov2. Overall, the data illustrate that excessive ethanol self-administration is associated with broad expression and splicing mechanisms that involve membrane and synapse genes.

Keywords

References

  1. Mamm Genome. 2006 Jun;17(6):669-88 [PMID: 16783646]
  2. Ann N Y Acad Sci. 1998 May 30;844:50-8 [PMID: 9668664]
  3. Neuropsychopharmacology. 2010 Jan;35(1):217-38 [PMID: 19710631]
  4. Neuropsychopharmacology. 2014 Mar;39(4):823-30 [PMID: 24077067]
  5. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10314-9 [PMID: 21642533]
  6. Front Genet. 2012 Aug 27;3:157 [PMID: 22969789]
  7. Alcohol Res. 2015;37(1):109-24 [PMID: 26259092]
  8. Front Cell Neurosci. 2014 Sep 16;8:288 [PMID: 25278838]
  9. J Pharmacol Exp Ther. 2008 Jul;326(1):354-61 [PMID: 18436788]
  10. J Neurosci. 2012 Feb 1;32(5):1884-97 [PMID: 22302827]
  11. Genes Brain Behav. 2014 Nov;13(8):758-68 [PMID: 25262781]
  12. Alcohol Clin Exp Res. 2012 Aug;36(8):1330-9 [PMID: 22524154]
  13. Nucleic Acids Res. 2016 Jan 4;44(D1):D869-76 [PMID: 26615194]
  14. Drug Alcohol Depend. 2009 Apr 1;101(1-2):80-7 [PMID: 19111404]
  15. Int Rev Neurobiol. 2014;116:275-300 [PMID: 25172479]
  16. Neurochem Int. 2006 Nov;49(6):557-67 [PMID: 16766085]
  17. Alcohol Clin Exp Res. 2000 Dec;24(12):1873-82 [PMID: 11141048]
  18. PLoS Comput Biol. 2011 Jan 20;7(1):e1001057 [PMID: 21283776]
  19. BMC Bioinformatics. 2009 Feb 03;10:48 [PMID: 19192299]
  20. Front Cell Neurosci. 2014 Dec 05;8:415 [PMID: 25538565]
  21. Mol Psychiatry. 2015 Nov;20(11):1438-47 [PMID: 25450227]
  22. Psychopharmacology (Berl). 2014 Sep;231(17):3425-36 [PMID: 24781519]
  23. Biol Psychiatry. 2015 May 15;77(10):859-69 [PMID: 25433901]
  24. Alcohol Clin Exp Res. 2004 Dec;28(12):1796-804 [PMID: 15608595]
  25. Comput Biol Chem. 2015 Jun;56:71-83 [PMID: 25889321]
  26. Psychopharmacology (Berl). 2009 May;203(4):713-22 [PMID: 19052728]
  27. Cell Tissue Bank. 2014 Mar;15(1):99-110 [PMID: 23709130]
  28. Front Genet. 2015 May 13;6:174 [PMID: 26029240]
  29. Physiol Behav. 2005 Jan 31;84(1):53-63 [PMID: 15642607]
  30. Int J Cancer. 2016 Mar 1;138(5):1058-66 [PMID: 25784597]
  31. AIDS Res Hum Retroviruses. 2014 Feb;30(2):134-41 [PMID: 23931628]
  32. Alcohol Clin Exp Res. 2008 Feb;32(2):197-208 [PMID: 18162080]
  33. Alcohol Clin Exp Res. 2014 Nov;38(11):2835-43 [PMID: 25421519]
  34. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6368-73 [PMID: 16618939]
  35. Methods. 2010 Mar;50(3):199-204 [PMID: 19364532]
  36. Cold Spring Harb Perspect Med. 2012 Dec 01;2(12):a012195 [PMID: 23085848]
  37. Neuropsychopharmacology. 2011 Nov;36(12):2513-28 [PMID: 21796110]
  38. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  39. Front Hum Neurosci. 2010 Feb 26;4:13 [PMID: 20204155]
  40. J Pharmacol Exp Ther. 2008 Sep;326(3):792-800 [PMID: 18550690]
  41. BMC Genomics. 2011 Feb 21;12:124 [PMID: 21338521]
  42. Cancer Res. 1967 Feb;27(2):209-20 [PMID: 6018555]
  43. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  44. Front Psychiatry. 2012 Jan 03;2:72 [PMID: 22291662]
  45. Biol Psychiatry. 2014 May 15;75(10):765-73 [PMID: 24209778]
  46. Alcohol Clin Exp Res. 2014 Jul;38(7):1973-81 [PMID: 24942558]
  47. Pharmacol Biochem Behav. 2006 Aug;84(4):618-27 [PMID: 16790266]
  48. Stat Appl Genet Mol Biol. 2005;4:Article17 [PMID: 16646834]
  49. Alcohol Clin Exp Res. 2013 Aug;37(8):1295-303 [PMID: 23550792]
  50. J Neurochem. 2002 May;81(4):802-13 [PMID: 12065639]
  51. Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34 [PMID: 25199790]
  52. Biol Direct. 2014 Oct 14;9(1):20 [PMID: 25319552]
  53. Alcohol Clin Exp Res. 2008 Oct;32(10):1824-38 [PMID: 18702645]
  54. Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6626-31 [PMID: 21464311]
  55. Alcohol. 2014 May;48(3):217-23 [PMID: 24360287]
  56. Alcohol Clin Exp Res. 2009 Mar;33(3):531-7 [PMID: 19120064]
  57. BMC Bioinformatics. 2009 Jul 08;10:209 [PMID: 19586526]
  58. Alcohol Clin Exp Res. 2014 Dec;38(12):2915-24 [PMID: 25581648]
  59. Brain Res. 1997 Mar 14;751(1):102-12 [PMID: 9098573]

Grants

  1. U01 AA013510/NIAAA NIH HHS
  2. P51 OD011092/NIH HHS
  3. P50 AA010760/NIAAA NIH HHS
  4. U01 AA013519/NIAAA NIH HHS
  5. R01 AA011034/NIAAA NIH HHS
  6. R24 AA019431/NIAAA NIH HHS
  7. U01 AA013484/NIAAA NIH HHS
  8. P60 AA010760/NIAAA NIH HHS

MeSH Term

Alcohol Drinking
Animals
Brain
Calcineurin
Central Amygdaloid Nucleus
Central Nervous System Depressants
Cerebral Cortex
Cyclin-Dependent Kinases
Ethanol
Gene Expression Profiling
Intracellular Signaling Peptides and Proteins
Macaca mulatta
Male
Nerve Tissue Proteins
RNA Splicing
Self Administration
rab GTP-Binding Proteins

Chemicals

Central Nervous System Depressants
Intracellular Signaling Peptides and Proteins
Nerve Tissue Proteins
Ethanol
Cyclin-Dependent Kinases
PCTAIRE-3 protein kinase
Calcineurin
rab GTP-Binding Proteins