Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics.

Yuling Lin, Jiumeng Min, Ruilian Lai, Zhangyan Wu, Yukun Chen, Lili Yu, Chunzhen Cheng, Yuanchun Jin, Qilin Tian, Qingfeng Liu, Weihua Liu, Chengguang Zhang, Lixia Lin, Dongmin Zhang, Minkyaw Thu, Zihao Zhang, Shengcai Liu, Chunshui Zhong, Xiaodong Fang, Jian Wang, Huanming Yang, Rajeev K Varshney, Ye Yin, Zhongxiong Lai
Author Information
  1. Yuling Lin: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  2. Jiumeng Min: BGI-Shenzhen, Shenzhen 518083, China.
  3. Ruilian Lai: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  4. Zhangyan Wu: BGI-Shenzhen, Shenzhen 518083, China.
  5. Yukun Chen: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  6. Lili Yu: BGI-Shenzhen, Shenzhen 518083, China.
  7. Chunzhen Cheng: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  8. Yuanchun Jin: BGI-Shenzhen, Shenzhen 518083, China.
  9. Qilin Tian: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  10. Qingfeng Liu: BGI-Shenzhen, Shenzhen 518083, China.
  11. Weihua Liu: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  12. Chengguang Zhang: BGI-Shenzhen, Shenzhen 518083, China.
  13. Lixia Lin: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  14. Dongmin Zhang: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  15. Minkyaw Thu: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  16. Zihao Zhang: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  17. Shengcai Liu: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  18. Chunshui Zhong: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
  19. Xiaodong Fang: BGI-Shenzhen, Shenzhen 518083, China.
  20. Jian Wang: BGI-Shenzhen, Shenzhen 518083, China.
  21. Huanming Yang: BGI-Shenzhen, Shenzhen 518083, China.
  22. Rajeev K Varshney: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
  23. Ye Yin: BGI-Shenzhen, Shenzhen 518083, China.
  24. Zhongxiong Lai: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.

Abstract

Longan (Dimocarpus longan Lour.), an important subtropical fruit in the family Sapindaceae, is grown in more than 10 countries. Longan is an edible drupe fruit and a source of traditional medicine with polyphenol-rich traits. Tree size, alternate bearing, and witches' broom disease still pose serious problems. To gain insights into the genomic basis of longan traits, a draft genome sequence was assembled. The draft genome (about 471.88 Mb) of a Chinese longan cultivar, "Honghezi," was estimated to contain 31 007 genes and 261.88 Mb of repetitive sequences. No recent whole-genome-wide duplication event was detected in the genome. Whole-genome resequencing and analysis of 13 cultivated D. longan accessions revealed the extent of genetic diversity. Comparative transcriptome studies combined with genome-wide analysis revealed polyphenol-rich and pathogen resistance characteristics. Genes involved in secondary metabolism, especially those from significantly expanded (DHS, SDH, F3΄H, ANR, and UFGT) and contracted (PAL, CHS, and F3΄5΄H) gene families with tissue-specific expression, may be important contributors to the high accumulation levels of polyphenolic compounds observed in longan fruit. The high number of genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) and leucine-rich repeat receptor-like kinase proteins, as well as the recent expansion and contraction of the NBS-LRR family, suggested a genomic basis for resistance to insects, fungus, and bacteria in this fruit tree. These data provide insights into the evolution and diversity of the longan genome. The comparative genomic and transcriptome analyses provided information about longan-specific traits, particularly genes involved in its polyphenol-rich and pathogen resistance characteristics.

Keywords

References

  1. Nature. 2007 Sep 27;449(7161):463-7 pubmed:17721507
  2. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 pubmed:16845043
  3. Genome Biol. 2005;6(4):R30 pubmed:15833117
  4. Genome Res. 2013 Jan;23(1):195-200 pubmed:22972939
  5. BMC Genomics. 2015 Sep 17;16:706 pubmed:26380971
  6. Plant Mol Biol. 2013 Nov;83(4-5):365-77 pubmed:23783411
  7. Mol Genet Genomics. 2010 May;283(5):427-38 pubmed:20217430
  8. Bioinformatics. 2001 Sep;17(9):847-8 pubmed:11590104
  9. Bioinformatics. 2006 May 15;22(10):1269-71 pubmed:16543274
  10. Bioinformatics. 2011 Feb 15;27(4):578-9 pubmed:21149342
  11. Bioinformatics. 2004 Jun 12;20(9):1453-4 pubmed:14871861
  12. Gigascience. 2017 May 1;6(5):1-14 pubmed:28368449
  13. BMC Genet. 2013 Oct 06;14:98 pubmed:24093913
  14. Plant Cell. 2012 Nov;24(11):4333-45 pubmed:23136377
  15. Genet Mol Res. 2014 Mar 06;13(1):1447-55 pubmed:24634243
  16. Plant Physiol. 2016 Sep;172(1):272-83 pubmed:27373688
  17. Nat Commun. 2013;4:2640 pubmed:24136039
  18. PLoS One. 2007 Dec 19;2(12):e1326 pubmed:18094749
  19. Genome Res. 2001 Oct;11(10):1660-76 pubmed:11591643
  20. Plant Cell. 2013 Dec;25(12):4994-5010 pubmed:24363316
  21. BMC Plant Biol. 2014 Apr 17;14:99 pubmed:24739459
  22. BMC Genomics. 2013 Oct 07;14:689 pubmed:24098974
  23. Cytogenet Genome Res. 2005;110(1-4):462-7 pubmed:16093699
  24. Trends Plant Sci. 2010 Oct;15(10):573-81 pubmed:20674465
  25. New Phytol. 2012 Mar;193(4):1049-63 pubmed:22212278
  26. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80 pubmed:16632598
  27. Nucleic Acids Res. 2011 Jan;39(Database issue):D1095-102 pubmed:20864446
  28. Genome Res. 2004 May;14(5):988-95 pubmed:15123596
  29. Trends Plant Sci. 2004 Jan;9(1):49-56 pubmed:14729219
  30. Nat Commun. 2012;3:1318 pubmed:23271652
  31. PLoS One. 2014 Dec 05;9(12):e114568 pubmed:25479005
  32. Hortic Res. 2015 Jan 14;2:14065 pubmed:26504559
  33. PLoS One. 2013 Apr 11;8(4):e60337 pubmed:23593197
  34. Bioinformatics. 2001 Aug;17(8):754-5 pubmed:11524383
  35. Curr Opin Plant Biol. 2015 Apr;24:71-81 pubmed:25703261
  36. Nat Genet. 2000 May;25(1):25-9 pubmed:10802651
  37. Nature. 2008 Apr 24;452(7190):991-6 pubmed:18432245
  38. Bioinformatics. 2015 Oct 1;31(19):3210-2 pubmed:26059717
  39. Genome Res. 2000 Apr;10(4):516-22 pubmed:10779491
  40. Bioinformatics. 2013 Apr 15;29(8):1035-43 pubmed:23428641
  41. FEBS Lett. 2010 Sep 24;584(18):3990-4 pubmed:20691688
  42. Nat Biotechnol. 2013 Mar;31(3):240-6 pubmed:23354103
  43. World J Exp Med. 2012 Aug 20;2(4):78-85 pubmed:24520538
  44. Nature. 2010 Jan 21;463(7279):311-7 pubmed:20010809
  45. J Agric Food Chem. 2009 Oct 14;57(19):9293-8 pubmed:19739643
  46. Nat Genet. 2013 Jan;45(1):51-8 pubmed:23179023
  47. Nucleic Acids Res. 2000 Jan 1;28(1):45-8 pubmed:10592178
  48. Nat Genet. 2010 Oct;42(10):833-9 pubmed:20802477
  49. Nucleic Acids Res. 2011 May;39(10):e68 pubmed:21398631
  50. Genome Res. 2010 Feb;20(2):265-72 pubmed:20019144
  51. Bioinformatics. 2009 May 1;25(9):1105-11 pubmed:19289445
  52. Genome Res. 2003 Sep;13(9):2178-89 pubmed:12952885
  53. BMC Genomics. 2013 Aug 19;14:561 pubmed:23957614
  54. J Pharm Biomed Anal. 2010 Jan 20;51(2):471-7 pubmed:19345542
  55. Plant Cell. 2013 Oct;25(10):3657-83 pubmed:24179125
  56. Nat Genet. 2009 Dec;41(12):1275-81 pubmed:19881527
  57. Genome Res. 2002 Apr;12(4):656-64 pubmed:11932250
  58. Nat Genet. 2013 May;45(5):487-94 pubmed:23525075
  59. Nature. 2012 Aug 9;488(7410):213-7 pubmed:22801500
  60. Nat Genet. 2013 Jan;45(1):59-66 pubmed:23179022
  61. Nat Biotechnol. 2011 Jul 24;29(8):723-30 pubmed:21785424
  62. Genome Res. 2010 Jan;20(1):45-58 pubmed:19858364
  63. Mol Plant. 2016 Dec 5;9(12):1667-1670 pubmed:27717919
  64. Genome Res. 2013 Feb;23(2):396-408 pubmed:23149293
  65. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 pubmed:17485477
  66. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 pubmed:10592173
  67. Mol Genet Genomics. 2008 Sep;280(3):187-98 pubmed:18563445
  68. Genet Epidemiol. 2005 May;28(4):289-301 pubmed:15712363
  69. Genome Biol. 2007;8(4):R64 pubmed:17456239
  70. Eur J Clin Invest. 2010 Aug;40(8):713-21 pubmed:20561027
  71. Genome Biol. 2007;8(1):R13 pubmed:17241472
  72. Int J Food Sci Nutr. 2014 Aug;65(5):589-93 pubmed:24533783
  73. Bioinformatics. 2004 Nov 1;20(16):2878-9 pubmed:15145805
  74. Mol Biol Rep. 2014 May;41(5):3219-23 pubmed:24477589
  75. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 pubmed:15034147
  76. Nat Genet. 2011 Feb;43(2):109-16 pubmed:21186353
  77. Nat Genet. 2015 Dec;47(12):1435-42 pubmed:26523774

MeSH Term

Alternative Splicing
Evolution, Molecular
Fruit
Gene Expression Regulation, Plant
Genome, Plant
Phylogeny
Polymorphism, Single Nucleotide
Polyphenols
Sapindaceae
Sequence Analysis, RNA

Chemicals

Polyphenols