Assembly of functionally integrated human forebrain spheroids.

Fikri Birey, Jimena Andersen, Christopher D Makinson, Saiful Islam, Wu Wei, Nina Huber, H Christina Fan, Kimberly R Cordes Metzler, Georgia Panagiotakos, Nicholas Thom, Nancy A O'Rourke, Lars M Steinmetz, Jonathan A Bernstein, Joachim Hallmayer, John R Huguenard, Sergiu P Paşca
Author Information
  1. Fikri Birey: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  2. Jimena Andersen: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  3. Christopher D Makinson: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.
  4. Saiful Islam: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
  5. Wu Wei: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
  6. Nina Huber: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  7. H Christina Fan: BD Genomics, Menlo Park, California 94025, USA.
  8. Kimberly R Cordes Metzler: BD Genomics, Menlo Park, California 94025, USA.
  9. Georgia Panagiotakos: Department of Biochemistry and Biophysics, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA.
  10. Nicholas Thom: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  11. Nancy A O'Rourke: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  12. Lars M Steinmetz: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
  13. Jonathan A Bernstein: Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
  14. Joachim Hallmayer: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  15. John R Huguenard: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.
  16. Sergiu P Paşca: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.

Abstract

The development of the nervous system involves a coordinated succession of events including the migration of GABAergic (γ-aminobutyric-acid-releasing) neurons from ventral to dorsal forebrain and their integration into cortical circuits. However, these interregional interactions have not yet been modelled with human cells. Here we generate three-dimensional spheroids from human pluripotent stem cells that resemble either the dorsal or ventral forebrain and contain cortical glutamatergic or GABAergic neurons. These subdomain-specific forebrain spheroids can be assembled in vitro to recapitulate the saltatory migration of interneurons observed in the fetal forebrain. Using this system, we find that in Timothy syndrome-a neurodevelopmental disorder that is caused by mutations in the Ca1.2 calcium channel-interneurons display abnormal migratory saltations. We also show that after migration, interneurons functionally integrate with glutamatergic neurons to form a microphysiological system. We anticipate that this approach will be useful for studying neural development and disease, and for deriving spheroids that resemble other brain regions to assemble circuits in vitro.

References

  1. Neuron. 2016 Jan 20;89(2):248-68 [PMID: 26796689]
  2. Nat Neurosci. 2002 Mar;5(3):218-24 [PMID: 11850632]
  3. Nature. 2016 Mar 17;531(7594):371-5 [PMID: 26958833]
  4. Nat Rev Neurosci. 2012 Jan 18;13(2):107-20 [PMID: 22251963]
  5. Genome Biol. 2014;15(10):486 [PMID: 25344199]
  6. Annu Rev Neurosci. 2014;37:479-501 [PMID: 25002278]
  7. Cell. 2016 May 19;165(5):1238-54 [PMID: 27118425]
  8. Elife. 2016 Jul 26;5:null [PMID: 27458797]
  9. Am J Med Genet A. 2013 Jul;161A(7):1561-8 [PMID: 23703963]
  10. Nature. 2014 Jul 24;511(7510):421-7 [PMID: 25056061]
  11. Development. 2001 Feb;128(3):353-63 [PMID: 11152634]
  12. Cell. 2014 Nov 6;159(4):896-910 [PMID: 25417164]
  13. Korean J Physiol Pharmacol. 2010 Dec;14(6):399-405 [PMID: 21311681]
  14. Nat Rev Genet. 2014 Feb;15(2):82-92 [PMID: 24434846]
  15. Nat Neurosci. 2013 Feb;16(2):201-9 [PMID: 23313911]
  16. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  17. Elife. 2015 Jun 23;4:e07103 [PMID: 26102527]
  18. Cereb Cortex. 2008 Oct;18(10):2306-17 [PMID: 18250082]
  19. Science. 2015 Feb 6;347(6222):1258367 [PMID: 25657253]
  20. Cell Stem Cell. 2013 May 2;12(5):559-72 [PMID: 23642365]
  21. Genes Brain Behav. 2003 Oct;2(5):255-67 [PMID: 14606691]
  22. Cell. 2015 May 21;161(5):1202-14 [PMID: 26000488]
  23. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12770-5 [PMID: 22761314]
  24. Genome Med. 2014 Oct 10;6(10):75 [PMID: 25360157]
  25. Schizophr Bull. 2010 May;36(3):443-7 [PMID: 20421335]
  26. J Vis Exp. 2015 Mar 04;(97):null [PMID: 25866930]
  27. Neuron. 2010 Nov 18;68(4):639-53 [PMID: 21092855]
  28. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):16-22 [PMID: 14603031]
  29. Nat Methods. 2013 Nov;10(11):1096-8 [PMID: 24056875]
  30. Lancet. 2013 Apr 20;381(9875):1371-9 [PMID: 23453885]
  31. Nature. 2013 Sep 19;501(7467):373-9 [PMID: 23995685]
  32. Neuron. 2016 Jan 6;89(1):37-53 [PMID: 26687838]
  33. Cell Stem Cell. 2013 May 2;12(5):573-86 [PMID: 23642366]
  34. Neuron. 2013 Sep 4;79(5):849-64 [PMID: 24012001]
  35. Br J Pharmacol. 2007 Oct;152(3):386-95 [PMID: 17700718]
  36. Nature. 2014 Nov 13;515(7526):264-8 [PMID: 25391964]
  37. Nat Methods. 2013 Nov;10(11):1093-5 [PMID: 24056876]
  38. Nat Methods. 2015 Jul;12(7):671-8 [PMID: 26005811]
  39. J Neurosci. 2003 Jun 15;23(12):5123-30 [PMID: 12832536]
  40. Neuron. 2009 Apr 16;62(1):53-71 [PMID: 19376067]
  41. Nature. 2014 Jan 16;505(7483):318-26 [PMID: 24429630]
  42. Nat Biotechnol. 2016 Feb;34(2):204-9 [PMID: 26829320]
  43. J Biol Chem. 2010 Jan 1;285(1):43-53 [PMID: 19887376]
  44. J Neurosci. 2005 Jun 15;25(24):5691-9 [PMID: 15958735]
  45. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8089-96; discussion 8086-8 [PMID: 15863612]
  46. Cell. 2004 Oct 1;119(1):19-31 [PMID: 15454078]
  47. Nat Rev Neurosci. 2006 Sep;7(9):687-96 [PMID: 16883309]
  48. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]
  49. Mol Cell Neurosci. 2009 Feb;40(2):167-86 [PMID: 19026749]
  50. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 [PMID: 24277810]
  51. Nature. 2011 Mar 10;471(7337):230-4 [PMID: 21307850]
  52. Nat Med. 2011 Nov 27;17 (12 ):1657-62 [PMID: 22120178]
  53. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19038-43 [PMID: 20956289]

Grants

  1. 5P01HG00020526/NIH HHS
  2. R01 NS034774/NINDS NIH HHS
  3. R01MH100900-02S1/NIH National Institue of Mental Health
  4. R33 MH100717/NIMH NIH HHS
  5. R01 MH107800/NIMH NIH HHS
  6. R01 MH100900/NIMH NIH HHS
  7. R01 NS090911/NINDS NIH HHS

MeSH Term

Autistic Disorder
Cell Line
Cell Movement
Cells, Cultured
Female
GABAergic Neurons
Glutamic Acid
Humans
Interneurons
Long QT Syndrome
Male
Models, Biological
Neurogenesis
Neurons
Pluripotent Stem Cells
Prosencephalon
Spheroids, Cellular
Synapses
Syndactyly

Chemicals

Glutamic Acid