Activity of distinct growth factor receptor network components in breast tumors uncovers two biologically relevant subtypes.

Mumtahena Rahman, Shelley M MacNeil, David F Jenkins, Gajendra Shrestha, Sydney R Wyatt, Jasmine A McQuerry, Stephen R Piccolo, Laura M Heiser, Joe W Gray, W Evan Johnson, Andrea H Bild
Author Information
  1. Mumtahena Rahman: Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  2. Shelley M MacNeil: Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  3. David F Jenkins: Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA.
  4. Gajendra Shrestha: Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  5. Sydney R Wyatt: Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  6. Jasmine A McQuerry: Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  7. Stephen R Piccolo: Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
  8. Laura M Heiser: Department of Biomedical Engineering, Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA.
  9. Joe W Gray: Department of Biomedical Engineering, Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA.
  10. W Evan Johnson: Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
  11. Andrea H Bild: Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA. andreab@genetics.utah.edu.

Abstract

BACKGROUND: The growth factor receptor network (GFRN) plays a significant role in driving key oncogenic processes. However, assessment of global GFRN activity is challenging due to complex crosstalk among GFRN components, or pathways, and the inability to study complex signaling networks in patient tumors. Here, pathway-specific genomic signatures were used to interrogate GFRN activity in breast tumors and the consequent phenotypic impact of GRFN activity patterns.
METHODS: Novel pathway signatures were generated in human primary mammary epithelial cells by overexpressing key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, KRAS (G12V), RAF1, BAD). The pathway analysis toolkit Adaptive Signature Selection and InteGratioN (ASSIGN) was used to estimate pathway activity for GFRN components in 1119 breast tumors from The Cancer Genome Atlas (TCGA) and across 55 breast cancer cell lines from the Integrative Cancer Biology Program (ICBP43). These signatures were investigated for their relationship to pro- and anti-apoptotic protein expression and drug response in breast cancer cell lines.
RESULTS: Application of these signatures to breast tumor gene expression data identified two novel discrete phenotypes characterized by concordant, aberrant activation of either the HER2, IGF1R, and AKT pathways ("the survival phenotype") or the EGFR, KRAS (G12V), RAF1, and BAD pathways ("the growth phenotype"). These phenotypes described a significant amount of the variability in the total expression data across breast cancer tumors and characterized distinctive patterns in apoptosis evasion and drug response. The growth phenotype expressed lower levels of BIM and higher levels of MCL-1 proteins. Further, the growth phenotype was more sensitive to common chemotherapies and targeted therapies directed at EGFR and MEK. Alternatively, the survival phenotype was more sensitive to drugs inhibiting HER2, PI3K, AKT, and mTOR, but more resistant to chemotherapies.
CONCLUSIONS: Gene expression profiling revealed a bifurcation pattern in GFRN activity represented by two discrete phenotypes. These phenotypes correlate to unique mechanisms of apoptosis and drug response and have the potential of pinpointing targetable aberration(s) for more effective breast cancer treatments.

Keywords

References

  1. Oncologist. 2015 May;20(5):474-82 [PMID: 25908555]
  2. Mol Cancer Ther. 2006 Oct;5(10):2444-9 [PMID: 17041087]
  3. Genome Biol. 2013;14(10):R110 [PMID: 24176112]
  4. J Natl Cancer Inst. 2014 Jan;106(1):djt319 [PMID: 24273215]
  5. J Carcinog Mutagen. 2013;2013(Suppl 7):null [PMID: 27088047]
  6. Cell. 2010 Jun 25;141(7):1117-34 [PMID: 20602996]
  7. Cancer Treat Rev. 2013 Dec;39(8):935-46 [PMID: 23643661]
  8. Semin Cancer Biol. 2004 Aug;14(4):262-70 [PMID: 15219619]
  9. Breast Cancer Res. 2000;2(3):154-7 [PMID: 11250704]
  10. Nucleic Acids Res. 2013 May 1;41(10):e108 [PMID: 23558742]
  11. Genome Biol. 2007;8(5):R76 [PMID: 17493263]
  12. Biochim Biophys Acta. 2010 Jan;1805(1):105-17 [PMID: 19931353]
  13. Oncotarget. 2014 Jul 15;5(13):4603-50 [PMID: 25051360]
  14. PLoS One. 2014 Jul 30;9(7):e103514 [PMID: 25076125]
  15. Nat Protoc. 2007;2(5):1236-47 [PMID: 17546019]
  16. Mol Oncol. 2014 Sep 12;8(6):1067-83 [PMID: 24910388]
  17. Oncogene. 2003 Mar 6;22(9):1281-93 [PMID: 12618753]
  18. Front Endocrinol (Lausanne). 2015 Apr 24;6:59 [PMID: 25964777]
  19. J Clin Oncol. 2009 Mar 10;27(8):1160-7 [PMID: 19204204]
  20. Cell Res. 2002 Mar;12(1):9-18 [PMID: 11942415]
  21. Oncologist. 2011;16 Suppl 1:12-9 [PMID: 21278436]
  22. Nature. 1993 Jul 15;364(6434):249-52 [PMID: 8321321]
  23. Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63 [PMID: 24355989]
  24. Ther Adv Med Oncol. 2014 Jul;6(4):154-66 [PMID: 25057302]
  25. Nature. 2000 Aug 17;406(6797):747-52 [PMID: 10963602]
  26. Oncologist. 2003;8(1):5-17 [PMID: 12604728]
  27. Mol Syst Biol. 2011 Jul 19;7:513 [PMID: 21772261]
  28. Mod Pathol. 2011 Feb;24(2):157-67 [PMID: 21076464]
  29. Mol Oncol. 2014 Oct;8(7):1339-54 [PMID: 24908424]
  30. Oncogene. 2007 May 14;26(22):3291-310 [PMID: 17496923]
  31. J Steroid Biochem Mol Biol. 2002 Feb;80(2):239-56 [PMID: 11897507]
  32. Trends Biochem Sci. 2011 Jun;36(6):320-8 [PMID: 21531565]
  33. Sci Transl Med. 2010 Apr 7;2(26):26ra25 [PMID: 20375364]
  34. Clin Transl Oncol. 2006 Feb;8(2):77-82 [PMID: 16632420]
  35. Oncogene. 2011 May 19;30(20):2367-78 [PMID: 21258408]
  36. Mol Biol Int. 2014;2014:852748 [PMID: 25276427]
  37. Oncotarget. 2015 Feb 28;6(6):3519-30 [PMID: 25784482]
  38. Oncogene. 2001 Apr 12;20(16):1981-9 [PMID: 11360182]
  39. Bioinformatics. 2012 Mar 15;28(6):882-3 [PMID: 22257669]
  40. Adv Med. 2014;2014:943648 [PMID: 26556430]
  41. J Biol Chem. 2003 May 23;278(21):18811-6 [PMID: 12646560]
  42. Oncogene. 2012 Mar 1;31(9):1196-206 [PMID: 21785460]
  43. Cancer Cell. 2014 Mar 17;25(3):282-303 [PMID: 24651011]
  44. Oncogene. 2005 Jul 7;24(29):4660-71 [PMID: 15897907]
  45. Adv Exp Med Biol. 2010;687:49-63 [PMID: 20919637]
  46. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8 [PMID: 12917485]
  47. Pharmacogenomics J. 2013 Feb;13(1):94-104 [PMID: 22083351]
  48. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  49. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  50. Cell. 1997 Oct 17;91(2):231-41 [PMID: 9346240]
  51. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  52. Arch Pathol Lab Med. 2016 Aug;140(8):806-14 [PMID: 27472239]
  53. Breast Cancer Res Treat. 2012 Nov;136(2):331-45 [PMID: 23073759]
  54. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  55. J Cell Biochem. 2000 Sep 7;79(3):355-69 [PMID: 10972974]
  56. Oncologist. 2006 Apr;11(4):342-57 [PMID: 16614230]
  57. Cancer Res. 2007 Dec 15;67(24):11867-75 [PMID: 18089817]
  58. Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37 [PMID: 11252954]
  59. Nature. 2006 Jan 19;439(7074):353-7 [PMID: 16273092]
  60. Biomed Res Int. 2014;2014:150845 [PMID: 25013758]
  61. Mol Cancer Ther. 2009 Dec;8(12 ):3173-80 [PMID: 19934277]
  62. Clin Proteomics. 2010 Dec;6(4):129-51 [PMID: 21691416]
  63. Bioinformatics. 2015 Jun 1;31(11):1745-53 [PMID: 25617415]
  64. Clin Genet. 2014 Jul;86(1):62-7 [PMID: 24635704]
  65. Endocr Relat Cancer. 2010 Sep 23;17(4):R245-62 [PMID: 20647302]
  66. CA Cancer J Clin. 2014 Jul-Aug;64(4):252-71 [PMID: 24890451]
  67. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  68. Nature. 2012 Oct 4;490(7418):61-70 [PMID: 23000897]
  69. Cancer Discov. 2011 Sep;1(4):352-65 [PMID: 22145099]
  70. Biochem Biophys Res Commun. 2007 Oct 5;361(4):865-9 [PMID: 17681275]
  71. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19503-8 [PMID: 19850869]
  72. Oncogene. 1998 Sep 10;17(10):1223-34 [PMID: 9771965]
  73. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  74. Breast Cancer Res. 2010;12(5):R68 [PMID: 20813035]
  75. Int J Cancer. 2013 Jul;133(1):1-13 [PMID: 23280579]
  76. J Transl Med. 2012 Sep 19;10 Suppl 1:S10 [PMID: 23046482]
  77. Oncologist. 2010;15 Suppl 5:39-48 [PMID: 21138954]
  78. Nat Rev Cancer. 2008 Feb;8(2):121-32 [PMID: 18202696]
  79. Oncogene. 2003 Dec 8;22(56):8983-98 [PMID: 14663477]
  80. Cancer Biol Ther. 2015 ;16(2):276-86 [PMID: 25756510]
  81. Core Evid. 2013;8:15-26 [PMID: 23515850]
  82. Cell. 2015 Feb 26;160(5):977-89 [PMID: 25723171]
  83. J Clin Oncol. 2013 Nov 1;31(31):3997-4013 [PMID: 24101045]
  84. Genes Cancer. 2011 Mar;2(3):232-60 [PMID: 21779496]
  85. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869-74 [PMID: 11553815]
  86. Oncogene. 2006 Aug 7;25(34):4798-811 [PMID: 16892092]
  87. J Biol Chem. 2003 Apr 11;278(15):13061-8 [PMID: 12551925]
  88. J Clin Oncol. 2010 Jun 1;28(16):2784-95 [PMID: 20404251]
  89. Biochim Biophys Acta. 2007 Aug;1773(8):1263-84 [PMID: 17126425]
  90. Oncotarget. 2012 Oct;3(10 ):1068-111 [PMID: 23085539]

Grants

  1. T15 LM007124/NLM NIH HHS
  2. U54 CA209978/NCI NIH HHS
  3. R01 ES025002/NIEHS NIH HHS
  4. U01 CA164720/NCI NIH HHS
  5. R01 GM127430/NIGMS NIH HHS

MeSH Term

Breast Neoplasms
Female
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Genes, Neoplasm
Humans
Receptors, Growth Factor
Signal Transduction

Chemicals

Receptors, Growth Factor