Comparative morphology and transcriptome analysis reveals distinct functions of the primary and secondary laticifer cells in the rubber tree.

Deguan Tan, Xiaowen Hu, Lili Fu, Anuwat Kumpeangkeaw, Zehong Ding, Xuepiao Sun, Jiaming Zhang
Author Information
  1. Deguan Tan: Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, CATAS, Xueyuan Road 4, Haikou, Hainan Province, 571101, China.
  2. Xiaowen Hu: Zhanjiang Experimental Station, CATAS, West Libration Road 20, Zhanjiang, Guangdong Province, 524013, China.
  3. Lili Fu: Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, CATAS, Xueyuan Road 4, Haikou, Hainan Province, 571101, China.
  4. Anuwat Kumpeangkeaw: Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, CATAS, Xueyuan Road 4, Haikou, Hainan Province, 571101, China.
  5. Zehong Ding: Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, CATAS, Xueyuan Road 4, Haikou, Hainan Province, 571101, China.
  6. Xuepiao Sun: Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, CATAS, Xueyuan Road 4, Haikou, Hainan Province, 571101, China.
  7. Jiaming Zhang: Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, CATAS, Xueyuan Road 4, Haikou, Hainan Province, 571101, China. zhangjiaming@itbb.org.cn.

Abstract

Laticifers are highly specialized cells that synthesize and store natural rubber. Rubber trees (Hevea brasiliensis Muell. Arg.) contain both primary and secondary laticifers. Morphological and functional differences between the two types of laticifers are largely unknown, but such information is important for breeding and cultivation practices. Morphological comparison using paraffin sections revealed only distribution differences: the primary laticifers were distributed randomly, while the secondary laticifers were distributed in concentric rings. Using isolated laticifer networks, the primary laticifers were shown to develop via intrusive "budding" and formed necklace-like morphology, while the secondary laticifers developed straight and smooth cell walls. Comparative transcriptome analysis indicated that genes involved in cell wall modification, such as pectin esterase, lignin metabolic enzymes, and expansins, were highly up-regulated in the primary laticifers and correspond to its necklace-like morphology. Genes involved in defense against biotic stresses and rubber biosynthesis were highly up-regulated in the primary laticifers, whereas genes involved in abiotic stresses and dormancy were up-regulated in the secondary laticifers, suggesting that the primary laticifers are more adequately prepared to defend against biotic stresses, while the secondary laticifers are more adequately prepared to defend against abiotic stresses. Therefore, the two types of laticifers are morphologically and functionally distinct.

References

  1. Biochem Biophys Res Commun. 2016 Jun 3;474(3):503-8 [PMID: 27130824]
  2. J Exp Bot. 2012 Mar;63(5):1863-71 [PMID: 22162870]
  3. PLoS One. 2010 Jan 26;5(1):e8904 [PMID: 20126659]
  4. Plant Physiol. 2002 May;129(1):145-55 [PMID: 12011346]
  5. Science. 2014 Jan 24;343(6169):408-11 [PMID: 24458638]
  6. J Biol Chem. 2015 Jul 24;290(30):18770-81 [PMID: 26037923]
  7. FEBS Lett. 2006 Jun 26;580(15):3631-7 [PMID: 16764867]
  8. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  9. J Biol Chem. 1996 Mar 8;271(10):5884-91 [PMID: 8621461]
  10. Phytochemistry. 1997 Oct;46(3):421-5 [PMID: 24627902]
  11. Front Plant Sci. 2015 Apr 09;6:224 [PMID: 25914705]
  12. Plant Cell. 1999 Apr;11(4):727-38 [PMID: 10213789]
  13. Biochem J. 1963 Dec;89(3):565-74 [PMID: 16749048]
  14. Biocontrol Sci. 2007 Mar;12 (1):1-6 [PMID: 17408002]
  15. Plant Biotechnol J. 2016 Oct;14 (10 ):2010-20 [PMID: 26997157]
  16. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  17. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1787-90 [PMID: 11607069]
  18. Plant Cell Physiol. 2003 Apr;44(4):412-4 [PMID: 12721382]
  19. Microbiol Res. 1996 Dec;151(4):433-9 [PMID: 9022304]
  20. Biochem Biophys Res Commun. 2000 Jul 21;274(1):177-82 [PMID: 10903915]
  21. PLoS Genet. 2009 Aug;5(8):e1000621 [PMID: 19714218]
  22. Insect Biochem Mol Biol. 1997 Nov;27(11):887-900 [PMID: 9501415]
  23. Plant Cell Environ. 2009 Sep;32(9):1211-29 [PMID: 19389052]
  24. Plant Physiol. 2003 Dec;133(4):1732-46 [PMID: 14576286]
  25. Med J Malaysia. 2004 May;59 Suppl B:214-5 [PMID: 15468894]
  26. Plant Cell Rep. 2011 Jun;30(6):1117-24 [PMID: 21301851]
  27. Plant Physiol. 2014 May;165(1):262-76 [PMID: 24639336]
  28. Phytochemistry. 2009 Apr;70(6):730-9 [PMID: 19409582]
  29. J Plant Physiol. 2009 May 15;166(8):831-43 [PMID: 19157640]
  30. J Vis Exp. 2009 Mar 11;(25):1263 [PMID: 19279553]
  31. Plant Physiol. 2015 Dec;169(4):2513-25 [PMID: 26468518]
  32. J Biol Chem. 1969 Jul 10;244(13):3583-9 [PMID: 5794227]
  33. J Biotechnol. 2004 Aug 5;111(3):241-51 [PMID: 15246660]
  34. Cell Stress Chaperones. 2001 Jul;6(3):177-89 [PMID: 11599559]
  35. Plant Biotechnol J. 2004 Mar;2(2):155-68 [PMID: 17147607]
  36. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  37. PLoS One. 2014 Nov 05;9(11):e111988 [PMID: 25372567]
  38. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  39. Plant Physiol. 1991 Feb;95(2):469-76 [PMID: 16668007]
  40. Plant Signal Behav. 2008 Nov;3(11):969-71 [PMID: 19704422]
  41. J Exp Bot. 2002 Jan;53(366):1-11 [PMID: 11741035]
  42. Brief Bioinform. 2013 Nov;14(6):671-83 [PMID: 22988256]
  43. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  44. Phytochemistry. 2004 Mar;65(5):525-34 [PMID: 15003415]
  45. Biosci Biotechnol Biochem. 2006 Jan;70(1):219-29 [PMID: 16428840]
  46. Mol Cell Proteomics. 2014 Oct;13(10):2787-800 [PMID: 25056938]
  47. Plant Mol Biol. 1999 Feb;39(3):629-36 [PMID: 10092188]
  48. Eur J Biochem. 2003 Dec;270(23):4671-80 [PMID: 14622254]
  49. J Genet Genomics. 2008 Feb;35(2):105-18 [PMID: 18407058]
  50. Plant Physiol. 2004 Nov;136(3):3649-59 [PMID: 15516499]
  51. Plant J. 2006 Oct;48(1):98-112 [PMID: 16942607]
  52. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  53. Plant Mol Biol. 2007 Jul;64(4):371-86 [PMID: 17453154]
  54. BMC Plant Biol. 2015 Apr 18;15:104 [PMID: 25928745]
  55. Protein Expr Purif. 1997 Oct;11(1):61-71 [PMID: 9325140]
  56. Phytochemistry. 2003 Jul;63(5):517-22 [PMID: 12809711]
  57. New Phytol. 2015 Apr;206(2):807-16 [PMID: 25420550]
  58. J Plant Physiol. 2012 Oct 15;169(15):1565-70 [PMID: 22854183]
  59. Clin Exp Immunol. 1998 Jun;112(3):355-62 [PMID: 9649202]
  60. Biosci Biotechnol Biochem. 1999 Oct;63(10):1671-6 [PMID: 10586494]
  61. Genetics. 2005 Sep;171(1):305-21 [PMID: 15965251]
  62. Biomacromolecules. 2005 Jan-Feb;6(1):279-89 [PMID: 15638531]
  63. J Biochem Biophys Methods. 2007 Aug 1;70(5):749-54 [PMID: 17490750]
  64. Plant J. 2008 May;54(3):466-80 [PMID: 18266922]
  65. J Biol Chem. 1981 Mar 10;256(5):2180-4 [PMID: 6780560]
  66. Physiol Plant. 2008 Mar;132(3):370-83 [PMID: 18275468]
  67. Trends Plant Sci. 2008 Dec;13(12):631-9 [PMID: 18977166]
  68. Genome Biol. 2004;5(4):219 [PMID: 15059252]
  69. Appl Microbiol Biotechnol. 2000 Apr;53(4):355-65 [PMID: 10803889]
  70. Mol Biol Rep. 2010 Oct;37(7):3327-34 [PMID: 19885739]
  71. Plant Physiol. 2007 Sep;145(1):183-91 [PMID: 17586690]
  72. Arch Environ Contam Toxicol. 2010 Oct;59(3):513-9 [PMID: 20238111]
  73. Mol Plant. 2008 Jul;1(4):667-74 [PMID: 19825571]
  74. Plant Mol Biol. 1992 Jun;19(3):473-84 [PMID: 1377968]
  75. Front Plant Sci. 2016 Jan 13;6:1231 [PMID: 26793211]
  76. J Biol Chem. 2004 Jun 4;279(23):23933-41 [PMID: 15024009]
  77. Mol Cells. 2007 Jun 30;23(3):280-6 [PMID: 17646702]
  78. Planta. 1996;199(3):459-66 [PMID: 8771802]
  79. Plant Physiol. 1990 Oct;94(2):401-5 [PMID: 16667728]
  80. Biomed Res Int. 2013;2013:397142 [PMID: 23865052]
  81. Plant Mol Biol. 1996 Nov;32(3):447-52 [PMID: 8980493]
  82. J Clin Invest. 1997 Aug 15;100(4):867-74 [PMID: 9259586]
  83. J Biol Chem. 1995 Dec 15;270(50):29760-5 [PMID: 8530367]
  84. Planta. 2014 Aug;240(2):337-44 [PMID: 24841475]
  85. Plant Signal Behav. 2006 Sep;1(5):223-4 [PMID: 19704662]
  86. J Biol Chem. 1967 Dec 25;242(24):5715-23 [PMID: 5633400]
  87. PLoS One. 2015 Jul 02;10(7):e0131974 [PMID: 26133557]
  88. Plant Sci. 2011 Aug;181(2):132-9 [PMID: 21683878]
  89. Biotechnol Lett. 2006 Apr;28(8):593-9 [PMID: 16614898]
  90. PLoS One. 2014 May 14;9(5):e96342 [PMID: 24828743]
  91. Annu Rev Phytopathol. 1995;33:275-97 [PMID: 18999962]
  92. Biosci Biotechnol Biochem. 2016 Sep;80(9):1781-91 [PMID: 26980104]
  93. J Exp Bot. 2010 Oct;61(15):4169-83 [PMID: 20581122]
  94. Plant J. 2010 Aug;63(3):469-83 [PMID: 20497379]
  95. PLoS One. 2014 Jul 14;9(7):e102407 [PMID: 25019283]
  96. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  97. Plant Cell. 2011 Jul;23(7):2774-87 [PMID: 21742993]
  98. Planta. 2009 Jun;230(1):215-25 [PMID: 19415323]
  99. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  100. Plant Physiol. 2005 Jan;137(1):274-86 [PMID: 15618431]
  101. FEBS Lett. 2011 Feb 18;585(4):596-600 [PMID: 21251912]
  102. Trends Plant Sci. 2001 Sep;6(9):414-9 [PMID: 11544130]
  103. Plant J. 2013 Oct;76(1):151-64 [PMID: 23826687]

MeSH Term

Gene Expression Profiling
Gene Expression Regulation, Plant
Hevea
Plant Proteins
Rubber
Sequence Analysis, RNA
Stress, Physiological

Chemicals

Plant Proteins
Rubber

Word Cloud

Created with Highcharts 10.0.0laticifersprimarysecondarystresseshighlyrubbermorphologyinvolvedup-regulatedcellsMorphologicaltwotypesdistributedlaticifernecklace-likecellComparativetranscriptomeanalysisgenesbioticabioticadequatelyprepareddefenddistinctLaticifersspecializedsynthesizestorenaturalRubbertreesHeveabrasiliensisMuellArgcontainfunctionaldifferenceslargelyunknowninformationimportantbreedingcultivationpracticescomparisonusingparaffinsectionsrevealeddistributiondifferences:randomlyconcentricringsUsingisolatednetworksshowndevelopviaintrusive"budding"formeddevelopedstraightsmoothwallsindicatedwallmodificationpectinesteraseligninmetabolicenzymesexpansinscorrespondGenesdefensebiosynthesiswhereasdormancysuggestingThereforemorphologicallyfunctionallyrevealsfunctionstree

Similar Articles

Cited By