Enhanced interplanetary panspermia in the TRAPPIST-1 system.

Manasvi Lingam, Abraham Loeb
Author Information
  1. Manasvi Lingam: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; manasvi@seas.harvard.edu.
  2. Abraham Loeb: Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138.

Abstract

We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.

Keywords

References

  1. Nature. 2017 Feb 22;542(7642):456-460 [PMID: 28230125]
  2. Astrobiology. 2005 Aug;5(4):483-96 [PMID: 16078867]
  3. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3199-203 [PMID: 16592024]
  4. Crit Rev Biochem Mol Biol. 2004 Mar-Apr;39(2):99-123 [PMID: 15217990]
  5. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7816-21 [PMID: 19416893]
  6. Nature. 2016 Aug 24;536(7617):437-40 [PMID: 27558064]
  7. Astrobiology. 2013 Mar;13(3):279-91 [PMID: 23537137]
  8. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):395-400 [PMID: 22198766]
  9. Nature. 1988 Apr 21;332(6166):687-8 [PMID: 11536601]
  10. Icarus. 2000 Jun;145(2):391-427 [PMID: 11543506]
  11. Astrobiology. 2007 Feb;7(1):252-74 [PMID: 17407410]
  12. Microbiol Mol Biol Rev. 2010 Mar;74(1):121-56 [PMID: 20197502]
  13. Orig Life Evol Biosph. 2008 Feb;38(1):87-104 [PMID: 17906941]
  14. Astrobiology. 2005 Jun;5(3):372-90 [PMID: 15941381]
  15. Astrobiology. 2016 Jun;16(6):418-26 [PMID: 27213220]
  16. Nature. 2001 Feb 22;409(6823):1083-91 [PMID: 11234022]
  17. Astrobiology. 2013 Dec;13(12):1155-65 [PMID: 24341459]
  18. Astrobiology. 2002 Fall;2(3):293-304 [PMID: 12530239]
  19. Trends Microbiol. 2009 Jun;17(6):243-50 [PMID: 19464895]
  20. Nature. 2016 May 02;533(7602):221-4 [PMID: 27135924]
  21. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8127-32 [PMID: 27382156]
  22. Ecol Lett. 2007 Oct;10(10):995-1015 [PMID: 17845298]
  23. Astrobiology. 2016 Jun;16(6):465-85 [PMID: 27096351]
  24. Astrobiology. 2014 Sep;14(9):798-835 [PMID: 25147963]
  25. Trends Ecol Evol. 1996 Aug;11(8):326-30 [PMID: 21237863]

MeSH Term

Life
Planets
Stars, Celestial

Word Cloud

Created with Highcharts 10.0.0panspermiasystemTRAPPIST-1planetsprobabilityinterplanetarylikelycomparednumberalsolifeexoplanetspresentsimplemodelestimatingrecentlydiscoveredsevenorbitingultracooldwarfstarfindpotentiallyordersmagnitudeoccurEarth-to-Marscaseconsequenceargueabiogenesisenhancedsolaradoptingmodelstheoreticalecologyshowspeciestransferredlife-bearinghigherincreasedratesimmigrationproposeobservationalmetricsevaluatingwhetherinitiatedmultipleresultsapplicablehabitableexomoonsplanetarysystemsEnhancedastrobiologyorigin

Similar Articles

Cited By