Single-Cell Alternative Splicing Analysis with Expedition Reveals Splicing Dynamics during Neuron Differentiation.

Yan Song, Olga B Botvinnik, Michael T Lovci, Boyko Kakaradov, Patrick Liu, Jia L Xu, Gene W Yeo
Author Information
  1. Yan Song: Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  2. Olga B Botvinnik: Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
  3. Michael T Lovci: Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
  4. Boyko Kakaradov: Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
  5. Patrick Liu: Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  6. Jia L Xu: Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  7. Gene W Yeo: Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Molecular Engineering Laboratory, A(∗)STAR, Singapore 138632, Singapore. Electronic address: geneyeo@ucsd.edu.

Abstract

Alternative splicing (AS) generates isoform diversity for cellular identity and homeostasis in multicellular life. Although AS variation has been observed among single cells, little is known about the biological or evolutionary significance of such variation. We developed Expedition, a computational framework consisting of outrigger, a de novo splice graph transversal algorithm to detect AS; anchor, a Bayesian approach to assign modalities; and bonvoyage, a visualization tool using non-negative matrix factorization to display modality changes. Applying Expedition to single pluripotent stem cells undergoing neuronal differentiation, we discover that up to 20% of AS exons exhibit bimodality. Bimodal exons are flanked by more conserved intronic sequences harboring distinct cis-regulatory motifs, constitute much of cell-type-specific splicing, are highly dynamic during cellular transitions, preserve reading frame, and reveal intricacy of cell states invisible to conventional gene expression analysis. Systematic AS characterization in single cells redefines our understanding of AS complexity in cell biology.

Keywords

References

  1. Nature. 2011 Mar 3;471(7336):63-7 [PMID: 21368825]
  2. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601 [PMID: 25480548]
  3. J Comput Biol. 2004;11(2-3):377-94 [PMID: 15285897]
  4. Nucleic Acids Res. 2015 Jul 1;43(W1):W30-8 [PMID: 25943547]
  5. Nat Methods. 2010 Dec;7(12):1009-15 [PMID: 21057496]
  6. J Biol Chem. 1989 Feb 5;264(4):2363-7 [PMID: 2914912]
  7. Bioinformatics. 2013 Sep 15;29(18):2292-9 [PMID: 23821651]
  8. Nucleic Acids Res. 2010 Jan;38(Database issue):D86-90 [PMID: 19969536]
  9. PLoS Genet. 2008 Nov;4(11):e1000278 [PMID: 19043548]
  10. Nature. 1999 Oct 21;401(6755):788-91 [PMID: 10548103]
  11. Hum Genet. 2015 Jan;134(1):37-44 [PMID: 25204874]
  12. Bioinformatics. 2010 Jun 15;26(12):i325-33 [PMID: 20529924]
  13. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 [PMID: 26673716]
  14. Nature. 2008 Mar 13;452(7184):230-3 [PMID: 18337823]
  15. Nature. 2014 Jun 19;510(7505):363-9 [PMID: 24919153]
  16. Nature. 2013 Jul 11;499(7457):172-7 [PMID: 23846655]
  17. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  18. Nat Biotechnol. 2012 Aug;30(8):777-82 [PMID: 22820318]
  19. Nat Biotechnol. 2009 Mar;27(3):275-80 [PMID: 19252484]
  20. Genome Res. 2012 Oct;22(10):2008-17 [PMID: 22722343]
  21. Nucleic Acids Res. 2016 Feb 29;44(4):1579-90 [PMID: 26511095]
  22. Mol Biol Cell. 2008 Sep;19(9):3769-81 [PMID: 18579690]
  23. Nature. 2015 Jul 23;523(7561):486-90 [PMID: 26083756]
  24. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  25. Science. 2003 Dec 19;302(5653):2141-4 [PMID: 14684825]
  26. Science. 2012 Dec 21;338(6114):1587-93 [PMID: 23258890]
  27. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  28. Mol Biol Evol. 2008 Dec;25(12):2699-707 [PMID: 18820252]
  29. Mol Syst Biol. 2011 Jul 05;7:506 [PMID: 21734645]
  30. Bioinformatics. 2005 Aug 15;21(16):3433-4 [PMID: 15955779]
  31. Nat Rev Genet. 2013 Mar;14(3):152-3 [PMID: 23381119]
  32. Nature. 2008 Nov 27;456(7221):470-6 [PMID: 18978772]
  33. Bioinformatics. 2010 Sep 1;26(17):2204-7 [PMID: 20639541]
  34. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41 [PMID: 14681378]
  35. Genome Res. 2014 Mar;24(3):496-510 [PMID: 24299736]
  36. Nature. 2013 Jun 13;498(7453):236-40 [PMID: 23685454]
  37. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  38. Science. 2012 Dec 21;338(6114):1593-9 [PMID: 23258891]
  39. Carcinogenesis. 2011 Mar;32(3):271-8 [PMID: 21112961]
  40. Genomics. 1999 Feb 1;55(3):257-67 [PMID: 10049579]
  41. Nat Genet. 2008 Dec;40(12):1413-5 [PMID: 18978789]
  42. Nat Biotechnol. 2014 May;32(5):462-4 [PMID: 24752080]
  43. Bioinformatics. 2015 Mar 15;31(6):878-85 [PMID: 25406327]

Grants

  1. R01 AI095277/NIAID NIH HHS
  2. R01 AI123202/NIAID NIH HHS
  3. P30 NS047101/NINDS NIH HHS
  4. R01 HG004659/NHGRI NIH HHS
  5. U19 MH107367/NIMH NIH HHS
  6. R01 HD085902/NICHD NIH HHS
  7. R01 NS075449/NINDS NIH HHS

MeSH Term

Algorithms
Alternative Splicing
Bayes Theorem
Cell Line
Computer Simulation
Evolution, Molecular
Gene Expression Regulation, Developmental
Humans
Kinetics
Male
Models, Genetic
Nerve Tissue Proteins
Neural Stem Cells
Neurogenesis
Neurons
Phenotype
Pluripotent Stem Cells
RNA, Messenger
Single-Cell Analysis

Chemicals

Nerve Tissue Proteins
RNA, Messenger